Khoảng cách lớn nhất từ gốc tọa độ O đến đường thẳng d: y= (m-1) + 4m là
cho đường thẳng (d): y=m(2x-1)+3-2x
a) Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) bằng 1.
a) Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) đạt giá trị lớn nhất.
Cho đường thẳng (d): y-mx+2
a) tìm m để khoảng cách từ gốc tọa độ (O) đến (d) lớn nhất
b) tìm m để khoảng cách từ gốc tọa độ (O) đến (d) bằng 1
Cho đường thẳng (d): y-mx+2
a) tìm m để khoảng cách từ gốc tọa độ (O) đến (d) lớn nhất
b) tìm m để khoảng cách từ gốc tọa độ (O) đến (d) bằng 1
Bạn viết sai rồi, đường thẳng y-mx+2 =0 hay y=mx+2 vậy bạn?
Cho đường thẳng (d): y-mx+2
a) tìm m để khoảng cách từ gốc tọa độ (O) đến (d) lớn nhất
b) tìm m để khoảng cách từ gốc tọa độ (O) đến (d) bằng 1
Khoảng cách lớn nhất từ gốc tọa độ O đến đường thẳng (d): y=(m-1)x+4m là
Lời giải:
Nếu gọi khoảng cách từ $O$ đến $(d)$ là $h$ thì $\frac{1}{h^2}=\frac{m^2-2m+2}{16m^2}$
Giải thích: Bạn xem lời giải tương tự tại link sau:
Câu hỏi của Rồng Xanh - Toán lớp 9 | Học trực tuyến
Để $h$ max thì $\frac{1}{h^2}$ min hay $\frac{m^2-2m+2}{16m^2}$ min
Mà:
\(\frac{m^2-2m+2}{16m^2}=\frac{1}{16}-\frac{1}{8m}+\frac{1}{8m^2}=\frac{1}{8}(\frac{1}{m^2}-\frac{1}{m}+\frac{1}{4})+\frac{1}{32}=\frac{1}{8}(\frac{1}{m}-\frac{1}{2})^2+\frac{1}{32}\geq \frac{1}{32}\)
Vậy $\frac{1}{h^2}=\frac{m^2-2m+2}{16m^2}_{\min}=\frac{1}{32}$ khi $\frac{1}{m}-\frac{1}{2}=0$ hay khi $m=2$
Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d): y=(m+2)x+2m+3 là lớn nhất
cho đường thẳng y=(m-2) x+2 (d) a, CMR: đường thẳng (d) luôn đi qua 1 điểm cố định với mọi m b,tìm già trị của m để khoảng cách từ gốc tọa độ đến đương thẳng (d) =1 c, tìm giá trị của m để khoảng cách từ gốc tọa độ đến đường thẳng m là lớn nhất
\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)
Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua
\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)
Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)
Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)
\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
Đặt \(OH^2=t\)
\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)
Cho hàm số y=(2m-3)x-1 (1)
a;tìm m để khoảng cách từ gốc tọa độ đến đường thẳng (1) bằng 1/\(\dfrac{1}{\sqrt{5}}\)
b:tìm m để khoảng cách từ gốc tọa độ đến đường thẳng (1) LÀ LỚN NHẤT
Cho đường thẳng (d): y = (m-2)x+2
a) CM: đường thẳng (d) luôn đi qua 1 điểm cố định với mọi giá trị của m
b, Tim m để khoảng cách từ gốc tọa độ đến (d) = 1
c, Tim m để khoảng cách từ gốc tọa độ đến (d) có gtri lớn nhất
Lời giải:a) Gọi $M(x_0,y_0)$ là điểm cố định mà $(d)$ luôn đi qua với mọi giá trị của $m$. Ta chỉ cần chỉ ra $x_0,y_0$ có tồn tại là được.
$M\in (d), \forall m$
$\Leftrightarrow y_0=(m-2)x_0+2, \forall m$
$\Leftrightarrow mx_0+(2-2x_0-y_0)=0, \forall m$
\(\Leftrightarrow \left\{\begin{matrix} x_0=0\\ 2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_0=0\\ y_0=2\end{matrix}\right.\)
Vậy $(d)$ luôn đi qua điểm cố định $(0,2)$ (đpcm)
b) Gọi $A,B$ lần lượt là giao điểm của $(d)$ với trục $Ox,Oy$
Dễ thấy $A(\frac{-2}{m-2},0)$ và $B(0,2)$
Áp dụng hệ thức lượng trong tam giác vuông, nếu khoảng cách từ $O$ đến $(d)$ là $h$ thì:
\(\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{|x_A|^2}+\frac{1}{|y_B|^2}=\frac{(m-2)^2}{4}+\frac{1}{4}\)
Để $h=1$ thì \((m-2)^2+1=4\Leftrightarrow m=\pm \sqrt{3}-2\)
c) Để $h_{\max}$ thì $\frac{(m-2)^2+1}{4}$ min
$\Leftrightarrow (m-2)^2+1$ min
Dễ thấy $(m-2)^2+1$ đạt giá trị min bằng $1$ khi $m-2=0\Leftrightarrow m=2$