Những câu hỏi liên quan
CT
Xem chi tiết
QM
Xem chi tiết
NT
21 tháng 12 2021 lúc 20:58

Câu 1: 

\(=\sqrt{3}-\sqrt{2}-\sqrt{2}=3-2\sqrt{2}\)

Bình luận (1)
QM
Xem chi tiết
NT
26 tháng 12 2021 lúc 22:59

a: \(\Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)

Bình luận (0)
MN
Xem chi tiết
AH
30 tháng 5 2021 lúc 0:37

Lời giải:
ĐKXĐ: $x\geq 5$

$2x^2-8x-6=2\sqrt{x-5}\leq (x-5)+1$ theo BĐT Cô-si

$\Leftrightarrow 2x^2-9x-2\leq 0$

$\Leftrightarrow 2x(x-5)+(x-2)\leq 0$

Điều này vô lý do $2x(x-5)\geq 0; x-2\geq 3>0$ với mọi $x\geq 5$

Vậy pt vô nghiệm nên không có đáp án nào đúng.

Bình luận (0)
TN
Xem chi tiết
CC
Xem chi tiết
LL
1 tháng 10 2021 lúc 22:39

a) \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\dfrac{5-\sqrt{5}}{\sqrt{5}}=\sqrt{5}+\sqrt{5}+\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}}=\sqrt{5}+\sqrt{5}+\sqrt{5}-1=-1+3\sqrt{5}\)

b) \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}=\sqrt{\left(2-\sqrt{3}\right)^2}+1+\sqrt{3}=2-\sqrt{3}+1+\sqrt{3}=3\)

Bình luận (0)
NT
1 tháng 10 2021 lúc 22:45

a: \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\dfrac{5-\sqrt{5}}{\sqrt{5}}\)

\(=\sqrt{5}+\sqrt{5}+\sqrt{5}-1\)

\(=3\sqrt{5}-1\)

b: \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=2-\sqrt{3}+\sqrt{3}+1\)

=3

Bình luận (0)
CA
Xem chi tiết
LL
13 tháng 10 2021 lúc 11:15

1) \(=2\sqrt{5}-3+5-2\sqrt{5}=2\)

2) \(=\dfrac{2\sqrt{3}-2-2\sqrt{3}-2}{3-1}=\dfrac{-4}{2}=-2\)

3) \(=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}+\sqrt{2}-\sqrt{5}+\sqrt{2}=2\sqrt{2}\)

Bình luận (1)
NH
Xem chi tiết
TL
26 tháng 7 2018 lúc 9:18

\(1.\text{ }\dfrac{1}{\sqrt{k}-\sqrt{k+1}}=\dfrac{\left(\sqrt{k}+\sqrt{k+1}\right)}{\left(\sqrt{k}+\sqrt{k+1}\right)\left(\sqrt{k}-\sqrt{k+1}\right)}\\ =-\left(\sqrt{k}+\sqrt{k+1}\right)\\ \Rightarrow\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{8}-\sqrt{9}}\\ =-\left(\sqrt{1}+\sqrt{2}\right)+\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}+\sqrt{4}\right)+...+\left(\sqrt{8}+\sqrt{9}\right)\\ =-\sqrt{1}-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+...+\sqrt{8}+\sqrt{9}\\ \\ =\sqrt{9}-\sqrt{1}=2\)

\(2.\text{ }\dfrac{1}{\left(k+1\right)\sqrt{k}+\sqrt{k+1}k}=\dfrac{1}{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}+\sqrt{k}\right)}\\ =\dfrac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}\\ =\dfrac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}\left(k+1-k\right)}=\dfrac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}}\\ =\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\\ \Rightarrow\text{ }\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{7\sqrt{6}+6\sqrt{7}}\\ =\text{ }\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{6}}-\dfrac{1}{\sqrt{7}}\\ =\text{ }\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{7}}\\ \text{ }1-\dfrac{1}{\sqrt{7}}\)

Bình luận (1)
NA
26 tháng 7 2018 lúc 9:31

1.\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-\dfrac{1}{\sqrt{4}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-\sqrt{6}}-\dfrac{1}{\sqrt{6}-\sqrt{7}}+\dfrac{1}{\sqrt{7}-\sqrt{8}}-\dfrac{1}{\sqrt{8}-\sqrt{9}}=\dfrac{1+\sqrt{2}}{1-2}-\dfrac{\sqrt{2}+\sqrt{3}}{2-3}+\dfrac{\sqrt{3}+\sqrt{4}}{3-4}-\dfrac{\sqrt{4}+\sqrt{5}}{4-5}+\dfrac{\sqrt{5}+\sqrt{6}}{5-6}-\dfrac{\sqrt{6}+\sqrt{7}}{6-7}+\dfrac{\sqrt{7}+\sqrt{8}}{7-8}-\dfrac{\sqrt{8}+\sqrt{9}}{8-9}=-1-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+\sqrt{4}+\sqrt{5}-\sqrt{5}-\sqrt{6}+\sqrt{6}+\sqrt{7}-\sqrt{7}-\sqrt{8}+\sqrt{8}+\sqrt{9}=\sqrt{9}-1=3-1=2\)

Bình luận (0)
HT
Xem chi tiết
LL
6 tháng 11 2021 lúc 13:50

ĐKXĐ: \(x\ge3\)

\(pt\Leftrightarrow5\sqrt{x-3}+3\sqrt{x-3}-\sqrt{x-3}=7\)

\(\Leftrightarrow7\sqrt{x-3}=7\Leftrightarrow\sqrt{x-3}=1\)

\(\Leftrightarrow x-3=1\Leftrightarrow x=4\left(tm\right)\)

Bình luận (0)