Những câu hỏi liên quan
PB
Xem chi tiết
CT
7 tháng 12 2019 lúc 17:07

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

ΔBCD có BC = CD (gt) nên ΔBCD cân tại C.

⇒ ∠ B 1 = ∠ D 1 (tính chất tam giác cân)

Mà  ∠ D 1 =  ∠ D 2 ( Vì DB là tia phân giác của góc D)

Suy ra:  ∠ B 1 =  ∠ D 2

Do đó: BC // AD (vì có cặp góc ở vị trí so le trong bằng nhau)

Vậy ABCD là hình thang.

Bình luận (0)
CM
Xem chi tiết
MA
20 tháng 6 2016 lúc 9:27

B C D A

ta có BC = DC (Gt) => tam giác BCD cân tại C => góc CDB = góc CBD (hai góc ở đáy)

mặt khác góc CDB = góc BDA ( vì DB là phân giác góc D)

=> góc CBD = góc BDA (cùng = góc CDB )

mà 2 góc này nằm ở vị trí so le trong nên BC // AD => ABCD là hình thang

Bình luận (0)
DD
Xem chi tiết
HB
15 tháng 6 2016 lúc 20:02

ta có tam giác BCD cân tại C

=>góc CDB bằng góc CBD

=>BC//AD(goc ADB = gocCBD) 

=>DPCM ABCD là hình thang

Bình luận (0)
SK
Xem chi tiết
NH
4 tháng 6 2017 lúc 12:25

Ta có hình vẽ: A B C D 1 1 2

Ta có: BC= CD (gt)

=> \(\Delta BCD\) cân tại C

=> góc B1 = góc D1

mà góc D1 = D2 (gt)

=> góc D2 = góc B1

mặt khác 2 góc D2 và B1 đang ở vị trí so le trong

=> AB // CD

=> tứ giác ABCD là hình thang

Bình luận (0)
NH
29 tháng 6 2017 lúc 11:40

Hình thang

Bình luận (0)
TH
Xem chi tiết
ND
Xem chi tiết
NK
Xem chi tiết
NT
8 tháng 8 2023 lúc 14:20

CB=CD

=>góc CBD=góc CDB

mà góc ADB=góc CDB

nên góc CBD=góc ADB

=>AD//BC

=>ABCD là hình thang

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 12 2018 lúc 14:24

Chú ý tam giác CBD cân tại C. Khi đó cùng với DB là phân giác góc S ta chứng minh được  A D B ^ = C B D ^

Bình luận (0)
NB
Xem chi tiết
VH
29 tháng 6 2016 lúc 8:15

A B C D

ta có BC=CD (GT) nên tam giác BCD cân tại C => góc CBD = góc CDB ( hai góc đáy)

mặt khác góc CDB =  góc BDA ( vì DB là tia phân giác góc D)

=> góc BDA = góc CBD ( cùng = góc CDB)

mà hai góc này nằm ở vị trí so le trong nên BC // AD => ABCD là hình thang

Bình luận (0)