Những câu hỏi liên quan
TP
Xem chi tiết
TT
24 tháng 7 2017 lúc 11:47

\(\sqrt{3-\sqrt{5}}\sqrt{3-\sqrt{5}}\)\(\sqrt{3+\sqrt{5}}\)\(+\sqrt{3+\sqrt{5}}\sqrt{3+\sqrt{5}}\sqrt{3-\sqrt{5}}\)

=\(\sqrt{3-\sqrt{5}}\cdot\sqrt{3^2-5}+\sqrt{3+\sqrt{5}}\cdot\sqrt{3^2-5}\)=\(2\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)=\sqrt{2}\left(\sqrt{2\cdot3-2\sqrt{5}}+\sqrt{2\cdot3+2\sqrt{5}}\right)\) =\(=\sqrt{2}\left(\sqrt{5}-1+\sqrt{5}+1\right)=2\sqrt{10}\)

b tuong tu nha ban ^.^

Bình luận (0)
HB
21 tháng 8 2017 lúc 14:06

(14,78-a)/(2,87+a)=4/1

14,78+2,87=17,65

Tổng số phần bằng nhau là 4+1=5

Mỗi phần có giá trị bằng 17,65/5=3,53

=>2,87+a=3,53

=>a=0,66.

Bình luận (0)
BG
Xem chi tiết
NT
14 tháng 7 2021 lúc 14:06

Ta có: \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}\)

\(=\sqrt{25}=5\)

Bình luận (0)

\(\sqrt{5\sqrt{3+5\sqrt{48}-10\sqrt{7+4\sqrt{3}}}}\)

=\(\sqrt{5\sqrt{3+5\sqrt{48}-10\sqrt{4+2.2\sqrt{3+\left(\sqrt{3}\right)^2}}}}\)

=\(\sqrt{5\sqrt{3+5\sqrt{48-10.\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

=\(\sqrt{5\sqrt{3+5\sqrt{48-10.\sqrt{\left(2+\sqrt{3}\right)}}}}\)

=\(\sqrt{5\sqrt{3+5\sqrt{48-20+10}\sqrt{3}}}\)

=\(\sqrt{5\sqrt{3+5\sqrt{28+10}\sqrt{3}}}\)

=\(\sqrt{5\sqrt{3+5\sqrt{\left(\sqrt{3}\right)^2}+2.5.\sqrt{3}+5^2}}\)

=\(\sqrt{5\sqrt{3+5\sqrt{\left(\sqrt{3}+5\right)^2}}}\)

=\(\sqrt{5\sqrt{3+5\sqrt{\left(\sqrt{3}+5\right)}}}\)

=\(\sqrt{5\sqrt{3+5\sqrt{3+10}}}\)

=\(10\sqrt{3+10}\)

=\(\sqrt{10\left(\sqrt{3+1}\right)}\)

Bình luận (1)
DC
Xem chi tiết
H24
1 tháng 8 2019 lúc 8:41

\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{a+1-a}=\sqrt{a+1}-\sqrt{a}\Rightarrow\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.......+\frac{1}{\sqrt{99}+\sqrt{100}}=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-......-\sqrt{99}+\sqrt{100}=10-1=9\)

Bình luận (0)
H24
Xem chi tiết
AH
26 tháng 6 2021 lúc 16:19

\(A=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+1+2\sqrt{3.1}}-\sqrt{3+1-2\sqrt{3.1}}\)

\(=\sqrt{(\sqrt{3}+1)^2}-\sqrt{(\sqrt{3}-1)^2}=|\sqrt{3}+1|-|\sqrt{3}-1|=2\)

\(B=\sqrt{4+5-2\sqrt{4.5}}+\sqrt{4+5+2\sqrt{4.5}}=\sqrt{(\sqrt{4}-\sqrt{5})^2}+\sqrt{(\sqrt{4}+\sqrt{5})^2}\)

\(=|\sqrt{4}-\sqrt{5}|+|\sqrt{4}+\sqrt{5}|=2\sqrt{5}\)

 

Bình luận (1)
AH
26 tháng 6 2021 lúc 16:31

\(C\sqrt{2}=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7+1-2\sqrt{7.1}}-\sqrt{7+1+2\sqrt{7.1}}\)

\(=\sqrt{(\sqrt{7}-1)^2}-\sqrt{(\sqrt{7}+1)^2}\)

\(=|\sqrt{7}-1|-|\sqrt{7}+1|=-2\Rightarrow C=-\sqrt{2}\)

----------------------------

\(7+4\sqrt{3}=(2+\sqrt{3})^2\Rightarrow 10\sqrt{7+4\sqrt{3}}=10(2+\sqrt{3})\)

\(\Rightarrow \sqrt{48-10\sqrt{7+4\sqrt{3}}}=\sqrt{28-10\sqrt{3}}=\sqrt{(5-\sqrt{3})^2}=5-\sqrt{3}\)

\(\Rightarrow 3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}=3+5(5-\sqrt{3})=28-5\sqrt{3}\)

\(\Rightarrow D=\sqrt{5\sqrt{28-5\sqrt{3}}}\)

 

Bình luận (0)
AH
26 tháng 6 2021 lúc 16:35

Cách 1:

\(E=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}\)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})=(4+\sqrt{15})(8-2\sqrt{15})\)

\(=2(4+\sqrt{15})(4-\sqrt{15})=2(16-15)=2\)

Cách 2:

\(E^2=(4+\sqrt{15})^2(\sqrt{10}-\sqrt{6})^2(4-\sqrt{15})=(4+\sqrt{15})(4-\sqrt{15})(4+\sqrt{15}).(16-4\sqrt{15})\)

\(=(16-15)(4+\sqrt{15})(4-\sqrt{15}).4=(16-15)(16-15).4=4\)

Vì $E>0$ nên $E=2$

Bình luận (0)
NA
Xem chi tiết
H24
7 tháng 7 2023 lúc 9:26

\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left|2+\sqrt{3}\right|}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{3}-20}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{5^2-2.5.\sqrt{3}+\sqrt{3^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left|5-\sqrt{3}\right|}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+\sqrt{25}}\)

\(=\sqrt{4+5}\)

\(=\sqrt{9}\\ =3\)

Bình luận (0)
DT
7 tháng 7 2023 lúc 9:39

 \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10.|2+\sqrt{3}|}}}\)

\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10.\left(2+\sqrt{3}\right)}}}\)

\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(\sqrt{4+\sqrt{5\sqrt{3}+5.|5-\sqrt{3}|}}\)

\(\sqrt{4+\sqrt{5\sqrt{3}+5.\left(5-\sqrt{3}\right)}}\)

\(\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(\sqrt{4+\sqrt{25}}\)

\(\sqrt{4+5}\)

\(\sqrt{9}\)

\(3\)

 

Bình luận (0)
PK
Xem chi tiết
AT
12 tháng 7 2021 lúc 10:40

\(\sqrt{13+\sqrt{48}}=\sqrt{13+\sqrt{4.12}}=\sqrt{13+2\sqrt{12}}=\sqrt{\left(\sqrt{12}+1\right)^2}\)

\(=\sqrt{12}+1=2\sqrt{3}+1\)

\(\Rightarrow\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}-1\)

\(\Rightarrow\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{3+\sqrt{3}-1}=\sqrt{2+\sqrt{3}}\)

\(\Rightarrow\sqrt{\dfrac{4+2\sqrt{3}}{2}}=\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)

\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}==2.\dfrac{\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}+\sqrt{2}\)

2) biến đổi khúc sau như câu 1:

\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

 

Bình luận (3)
NT
12 tháng 7 2021 lúc 11:55

4) Ta có: \(\sqrt{30-2\sqrt{16+6\sqrt{11+4\sqrt{4-2\sqrt{3}}}}}\)

\(=\sqrt{30-2\sqrt{16+6\sqrt{11+4\left(\sqrt{3}-1\right)}}}\)

\(=\sqrt{30-2\sqrt{16+6\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{30-2\sqrt{16+6\left(2+\sqrt{3}\right)}}\)

\(=\sqrt{30-2\sqrt{28+6\sqrt{3}}}\)

\(=\sqrt{30-2\left(3\sqrt{3}+1\right)}\)

\(=\sqrt{28-6\sqrt{3}}=3\sqrt{3}-1\)

Bình luận (0)
NT
12 tháng 7 2021 lúc 11:56

5) Ta có: \(\dfrac{\left(5\sqrt{3}+\sqrt{50}\right)\left(5-\sqrt{24}\right)}{\sqrt{75}-5\sqrt{2}}\)

\(=\dfrac{5\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)^2}{\sqrt{75}-5\sqrt{2}}\)

\(=\dfrac{5\left(\sqrt{3}-\sqrt{2}\right)}{5\left(\sqrt{3}-\sqrt{2}\right)}=1\)

Bình luận (0)
KL
Xem chi tiết
H9
25 tháng 7 2023 lúc 9:25

\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{2^2+2\cdot2\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{5^2-2\cdot5\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}\)

\(=\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}\)

\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)

\(=\sqrt{25}\)

\(=\sqrt{5^2}\)

\(=5\)

Bình luận (0)
NT
25 tháng 7 2023 lúc 9:20

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{48-10\left(2+\sqrt{3}\right)}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}=\sqrt{25}=5\)

Bình luận (0)
HP
Xem chi tiết
NV
30 tháng 6 2016 lúc 21:08

a/ A =  \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

   \(=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

     \(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)

                                 Vậy A = 1

Bình luận (0)
GD
Xem chi tiết
NT
14 tháng 7 2021 lúc 14:15

Ta có: \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}\)

=5

Bình luận (0)