Bài 4: Liên hệ giữa phép chia và phép khai phương

H24

Tính:

A=\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)

B=\(\sqrt{9-4\sqrt{5}}+\sqrt{9+4\sqrt{5}}\)

C=\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

D=\(\sqrt{5\sqrt{3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

E=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)(2 cách)

F=\(\dfrac{\sqrt{17-12\sqrt{2}}}{\sqrt{3-2\sqrt{2}}}-\dfrac{\sqrt{17}+12\sqrt{2}}{\sqrt{3+2\sqrt{2}}}\)

AH
26 tháng 6 2021 lúc 16:19

\(A=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+1+2\sqrt{3.1}}-\sqrt{3+1-2\sqrt{3.1}}\)

\(=\sqrt{(\sqrt{3}+1)^2}-\sqrt{(\sqrt{3}-1)^2}=|\sqrt{3}+1|-|\sqrt{3}-1|=2\)

\(B=\sqrt{4+5-2\sqrt{4.5}}+\sqrt{4+5+2\sqrt{4.5}}=\sqrt{(\sqrt{4}-\sqrt{5})^2}+\sqrt{(\sqrt{4}+\sqrt{5})^2}\)

\(=|\sqrt{4}-\sqrt{5}|+|\sqrt{4}+\sqrt{5}|=2\sqrt{5}\)

 

Bình luận (1)
AH
26 tháng 6 2021 lúc 16:31

\(C\sqrt{2}=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7+1-2\sqrt{7.1}}-\sqrt{7+1+2\sqrt{7.1}}\)

\(=\sqrt{(\sqrt{7}-1)^2}-\sqrt{(\sqrt{7}+1)^2}\)

\(=|\sqrt{7}-1|-|\sqrt{7}+1|=-2\Rightarrow C=-\sqrt{2}\)

----------------------------

\(7+4\sqrt{3}=(2+\sqrt{3})^2\Rightarrow 10\sqrt{7+4\sqrt{3}}=10(2+\sqrt{3})\)

\(\Rightarrow \sqrt{48-10\sqrt{7+4\sqrt{3}}}=\sqrt{28-10\sqrt{3}}=\sqrt{(5-\sqrt{3})^2}=5-\sqrt{3}\)

\(\Rightarrow 3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}=3+5(5-\sqrt{3})=28-5\sqrt{3}\)

\(\Rightarrow D=\sqrt{5\sqrt{28-5\sqrt{3}}}\)

 

Bình luận (0)
AH
26 tháng 6 2021 lúc 16:35

Cách 1:

\(E=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}\)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})=(4+\sqrt{15})(8-2\sqrt{15})\)

\(=2(4+\sqrt{15})(4-\sqrt{15})=2(16-15)=2\)

Cách 2:

\(E^2=(4+\sqrt{15})^2(\sqrt{10}-\sqrt{6})^2(4-\sqrt{15})=(4+\sqrt{15})(4-\sqrt{15})(4+\sqrt{15}).(16-4\sqrt{15})\)

\(=(16-15)(4+\sqrt{15})(4-\sqrt{15}).4=(16-15)(16-15).4=4\)

Vì $E>0$ nên $E=2$

Bình luận (0)
AH
26 tháng 6 2021 lúc 17:03

\(F=\frac{\sqrt{8+9-2\sqrt{8.9}}}{\sqrt{2+1-2\sqrt{2.1}}}-\frac{\sqrt{8+9+2\sqrt{8.9}}}{\sqrt{2+1+2\sqrt{2.1}}}\)

\(=\frac{\sqrt{(\sqrt{9}-\sqrt{8})^2}}{\sqrt{(\sqrt{2}-1)^2}}-\frac{\sqrt{(\sqrt{8}+\sqrt{9})^2}}{\sqrt{(\sqrt{2}+1)^2}}\)

\(=\frac{\sqrt{9}-\sqrt{8}}{\sqrt{2}-1}-\frac{\sqrt{8}+\sqrt{9}}{\sqrt{2}+1}=\frac{3-2\sqrt{2}}{\sqrt{2}-1}-\frac{3+2\sqrt{2}}{\sqrt{2}+1}\)

\(=\frac{(\sqrt{2}-1)^2}{\sqrt{2}-1}-\frac{(\sqrt{2}+1)^2}{\sqrt{2}+1}=\sqrt{2}-1-(\sqrt{2}+1)=-2\)

Bình luận (0)