cho 2 số hữu tỉ a/b<c/d (b,d>0) chứng tỏ rằng :nếu a.d<b.c thì a/b<c/d
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho 2 số hữu tỉ a/b và b/c ( b, d > 0 )
chứng tỏ rằng: nếu a.d < b.c thì a/b < c/d
Cho 2 số hữu tỉ x=\(\frac{a}{b}\) và y=đó b và d là số nguyên dương, chứng tỏ
a)Nếu a.d=b.c thì x=y
b)Nếu a.d>b.c thì x>y
c)Nếu x>y thì a.d>b.c
cho 2 số hữu tỉ x và y
a) chứng tỏ nếu x<y thì a.d<b.c
b) nếu x<y thì a/b<a+c/b+d<c/d
a) x và y là số hữu tỉ nên x có dạng a/b,y có dạng c/d
vì x<y =>a/b<c/d
(=)a.d<b.c(đpcm)
cho 2 số hữu tỉ a/b và c/d (b,d > 0) . Chứng minh rằng nếu a/b < c/d thì a.d<b.c
Để a/b , a+c/b+d thi a(b+d)< b (a+c)<=> ab+ad < ab +bc <=>ab < bc <=> a/b < c/d
Để a+c/b+d < c/d thì (a+c).đ < (b+d).c <=> ab+cd < bc + cd <=> ad < bc <=> a/b < c/d
Cho 2 số hữu tỉ x=\(\frac{a}{b}\) và y=\(\frac{c}{d}\) trong đó b và d là số nguyên dương, chứng tỏ:
a)Nếu a.d=b.c thì x=y
b)Nếu a.d>b.c thì x>y
c)Nếu x>y thì a.d>b.c
Cho 2 số hữu tỉ a/b và c/d (với b>0, d>0)
Chứng minh rằng: nếu a/b < c/d thì a.d < b.c
a. Mẫu chung b.d > 0 (do b > 0; d > 0) nên nếu: thì da < bc
b. Ngược lại nếu a.d < b.c thì Ta có thể viết:
Bài 2: a. Chứng tỏ rằng nếu (b > 0; d > 0) thì
b. Hãy viết ba số hữu tỉ xen giữa và
Giải: a) Theo bài 1 ta có: (1)
Thêm a.b vào 2 vế của (1) ta có: a.b + a.d < b.c + a.b
a(b + d) < b(c + a) (2)
Thêm c.d vào 2 vế của (1): a.d + c.d < b.c + c.d
d(a + c) < c(b + d) (3) Từ (2) và (3) ta có:
a.d<b.c
Chúc bạn học tốt!!!! ^-^
Giải giúp mình câu này nhé. Thanks nhiều
cho 2 số hữu tỉ
a/b và c/d(biết b>0;d>0)
chứng minh rằng a/b < c/d nếu a.d < b.c
chứng minh rằng a.d < b.c nếu a/b < c/d
thanks nhiều
Làm nhắn gọn hơn thì
1
a/b < c/d
=> ad/bd < cb/db
=> ad < cb
2
ad < cb
=>ad /bd < cb/bd
Chúc pn hc tốt
Cho hai số hữu tỉ a/b; c/d (b>0; d>0). Chứng minh rằng a/b<c/d nếu a.d < b.c ?
Ta có:a/b<c/d =>ad<bc (1)
Thêm ab vào (1) ta đc:
ad+ab<bc+ab hay a(b+d)<b(a+c) =>a/b<a+c/b+d (2)
Thêm cd vào 2 vế của (1), ta lại có:
ad+cd<bc+cd hay d(a+c)<c(b+d) => c/d>a+c/b+d (3)
Từ (2) và (3) suy ra:a/b<a+c/b+d<c/d
(b và d >0)
Chứng minh rằng:
Nếu a/b < c/d thì a.d < b.cNếu a.d < b.c thì a/b < c/dBài toán này rất hay và logic ai giải đc là rất giỏi!!
1.
Nếu \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{cb}{db}\)
\(\Leftrightarrow ad< cd\left(dpcm\right)\)
2
Nếu \(ad< bc\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)
\(\Leftrightarrow\frac{a}{b}< \frac{c}{d}\left(dpcm\right)\)