Giúp mình câu b và c thôi ạ. Mình cảm ơn Cho Tam giác nhọn ABC (AB
Cho tam giác ABC CÓ BA góc nhọn (AB<AC). Vẽ các đường cao AD, BE và CF cắt nhau tại M
a) C/m: ABE đồng dạng ACF
b) C/m: AD.CM=CD.AB
c) Gọi K là giao điểm của EF và AD. C/m: AK.MD=AD.MK
(không cần vẽ hình, giúp mình câu c thôi ạ, cảm ơn<3)
c) -△AEF và △ABC có: \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(△ABE∼△ACF), \(\widehat{BAC}\) chung.
\(\Rightarrow\)△AEF∼△ABC (c-g-c) \(\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{EF}{BC}\right)^2\).
-△MFB và △MEC có: \(\widehat{FMB}=\widehat{EMC}\) , \(\widehat{MFB}=\widehat{MEC}=90^0\)
\(\Rightarrow\)△MFB∼△MEC (g-g) \(\Rightarrow\dfrac{MF}{ME}=\dfrac{MB}{MC}\).
-△MEF và △MCB có: \(\dfrac{MF}{MB}=\dfrac{ME}{MC}\left(\dfrac{MF}{ME}=\dfrac{MB}{MC}\right),\widehat{EMF}=\widehat{CMB}\)
\(\Rightarrow\)△MEF∼△MCB (c-g-c) \(\Rightarrow\dfrac{S_{MEF}}{S_{MCB}}=\left(\dfrac{EF}{BC}\right)^2\)
\(\dfrac{AK}{AD}.\dfrac{AE}{AC}=\dfrac{S_{AKE}}{S_{ADC}}=\dfrac{S_{AFK}}{D_{ADB}}=\dfrac{S_{AKE}+S_{AFK}}{S_{ADC}+S_{ADB}}=\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{EF}{BC}\right)^2\)
\(\dfrac{MK}{MD}.\dfrac{AE}{AC}=\dfrac{S_{MEK}}{S_{MDC}}=\dfrac{S_{MFK}}{S_{MDB}}=\dfrac{S_{MEK}+S_{MFK}}{S_{MDC}+S_{MDB}}=\dfrac{S_{MEF}}{S_{MCB}}=\left(\dfrac{EF}{BC}\right)^2\)
\(\Rightarrow\dfrac{AK}{AD}=\dfrac{MK}{MD}\Rightarrow AK.MD=MK.AD\)
Cho tam giác ABC vuông tại A, đường phân giác AD. Chứng minh rằng √2/AD = 1/AB + 1/AC. Kẻ đường cao AH và đường trung tuyến AM của tam giác ABC chứng minh rằng nếu 1/ah^2+1/am^2=2/ad^2. Giúp mình câu 2 thôi ạ mình cảm ơn
Để chứng minh rằng √2/AD = 1/AB + 1/AC, ta có thể sử dụng định lý phân giác trong tam giác vuông.
Vì tam giác ABC vuông tại A, nên ta có đường phân giác AD chia góc BAC thành hai góc bằng nhau.
Áp dụng định lý phân giác, ta có:
AB/BD = AC/CD
Từ đó, ta có:
AB/AD + AC/AD = AB/BD + AC/CD
= (AB + AC)/(BD + CD)
= (AB + AC)/BC
= 1/BC (vì tam giác ABC vuông tại A)
Vậy, ta có:
1/AD = 1/AB + 1/AC
√2/AD = √2/AB + √2/AC
Vậy, chứng minh đã được hoàn thành.
Để chứng minh rằng nếu 1/ah^2 + 1/am^2 = 2/ad^2, ta cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.
2/AD^2=(căn 2/AD)^2
=(1/AB+1/AC)^2
\(=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}+2\cdot\dfrac{1}{AB\cdot AC}\)
\(=\dfrac{1}{AH^2}+2\cdot\dfrac{1}{AH\cdot BC}\)
\(=\dfrac{1}{AH^2}+\dfrac{1}{AM^2}\)
Cho tam giác ABC cân tại A, kẻ AM vuông góc với BC (M thuộc BC). a) Chứng minh tam giác ABM = tam giác ACM. b)Kẻ MK//AB (K thuộc AC). Chứng minh AK=KM Mọi người giải giúp mình câu b thôi nhé, cảm ơn mọi người ạ
a: Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔABC có
M là trung điểm của BC
MK//AB
Do đó: K là trung điểm của AC
Ta có: ΔAMC vuông tại M
mà MK là đường trung tuyến
nên KA=KM
Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp đường tròn (O). Hai đường cao
BE và CF của tam giác ABC cắt nhau tại điểm H.Kẻ đường kính AD.
1) Chứng minh bốn điểm B, C, E, F cùng thuộc một đường trònvà BD.CF =
AC.CE
giúp mình với ạ ! Mình cảm ơn nhiều ạ !
1) Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
nên BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay B,C,E,F cùng thuộc một đường tròn(đpcm)
Cho tam giác ABC nhọn nội tiếp (O), có AB<AC. Vẽ các đường cao BE, CF cắt nhau tại H
a. Chứng minh tứ giác BFEC nội tiếp
b. Chứng minh IE.IB=IF.IC
c. AO vuông góc với EF
(Giúp mình vẽ hình và giải bài với ạ, mình xin cảm ơn)
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
b: Sửa đề; HE*HB=HF*HC
Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC
=>HE*HB=HF*HC
c: Kẻ tiếp tuyến Ax của (O)
=>góc xAC=góc ABC=góc AEF
=>Ax//FE
=>FE vuông góc AO
Cho tam giác nhọn ABC, đường cao AD (D thuộc BC). Gọi M, N lần lượt là hình chiếu vuông góc của D trên AB, AC. Chứng minh rằng:
1. Hai tam giác AMN và ACB đồng dạng.
2. MN=AD.sin BAC
Giúp mình câu 2 với ạ, mình đang cần gấp. Mình cảm ơn ạ
Trong tam giác AMN, ta có:
MN = AN.sin(∠MAN) (định lí sin)
Vì MN là hình chiếu vuông góc của D lên AB và AC, nên AN = AD.cos(∠BAC) và AM = AD.cos(∠CAB). Thay vào công thức trên, ta có:
MN = AD.cos(∠CAB).sin(∠BAC)
Do đó, để chứng minh MN = AD.sin(BAC), ta cần chứng minh rằng:
cos(∠CAB).sin(∠BAC) = sin(∠BAC)
Áp dụng định lí sin, ta có:
cos(∠CAB).sin(∠BAC) = sin(∠BAC).cos(∠CAB)
Vì cos(∠CAB) = cos(90° - ∠BAC) = sin(∠BAC), nên:
sin(∠BAC).cos(∠CAB) = sin(∠BAC).sin(∠BAC) = sin^2(∠BAC)
Vậy, MN = AD.sin(BAC).
Như vậy, đã chứng minh hai điều kiện trên.
cho tam giác ABC vuông tại A. AB = 15 cm, AC = 20 cm. Vẽ tia Ax // BC và tia By vuông góc với BC tại B, tia Ax cắt By tại D.
a) C/m tam giác ABC ~ tam giác DAB
b) Tính BC, DA, DB
c) AB cắt CD tại I. Tính diện tích tam giácBIC
Mình giải được câu a b rồi còn mỗi câu c thôi!! Bạn nào biết giải giúp mình với!! Cảm ơn trước!!! ^-^
Tam giác ABC nhọn (AB>AC). Đường cao BD, CE. a) C/m: Tam giác ADB đồng dạng tam giác AEC và AE.AB=AD.AC b) Tam giác AED đồng dạng tam giác ACD. c) M là giao điểm ED và BC. C/m MD.ME=MB.MC. Gíup mình với, mình cần gấp ! Cảm ơn rất nhiều ạ.
a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{DAB}\) chung
Do đó: ΔADB∼ΔAEC(g-g)
Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AB=AD\cdot AC\)(đpcm)
Cho A(1;-2),B(1,3),C(4,3)
a) Biểu diễn các điểm lên mặt phẳng tọa độ Oxy
b) Tam giác ABC là tam giác gì?
c)Tính diện tích tam giác ABC
(mình đg cần gấp các bạn giúp mình vs nhé,các bạn ko cần phải làm câu a và b đâu chỉ cần làm câu c thôi nhé, mình chỉ viết thế cho mấy bạn suy ra thôi ! Cảm ơn các bạn MAX nhiều)