Tìm số tự nhiên thỏa mãn: .
Tìm các số nguyên dương x,y thỏa mãn điều kiện: 2^x+2^y=64
tìm số nguyên x thỏa mãn: (x + 2022)^2 = 64(x + 2015)^3
Lời giải:
Gọi $d=ƯCLN(x+2022, x+2015)$
$\Rightarrow (x+2022)-(x+2015)\vdots d$
$\Rightarrow 7\vdots d$
$\Rightarrow d=1$ hoặc $d=7$
Nếu $d=1$ thì $x+2022, x+2015$ nguyên tố cùng nhau
$\Rightarrow (x+2022)^2, (x+2015)^3$ nguyên tố cùng nhau
$\Rightarrow$ để $(x+2022)^2=64(x+2015)^3$ thì:
$x+2015=1, (x+2022)^2=64$
$\Rightarrow x=-2014$ (tm)
Nếu $d=7$ thì đặt $x+2022=7a, x+2015=7b$ với $a,b$ nguyên tố cùng nhau.
Khi đó: $(7a)^2=64(7b)^3$
$\Rightarrow a^2=448b^3$
Vì $(a,b)=1$ nên $b=1; a^2=448$ (vô lý vì 448 không là scp)
Vậy.......
Tìm số tự nhiên thỏa mãn: .
Đáp số: .
`@` `\text{Ans}`
`\downarrow`
`2^(2x-4)=64`
`=>2^(2x-4)=2^6`
`=>2x-4=6`
`=>2x=10`
`=>x=10 \div 2`
`=> x=5`
Vậy, `x = 5.`
tìm tất cả cắp số nguyên (x,y)thỏa mãn 2x-2y=64
Giải ra nha
e)tìm x và y thỏa mãn: 2x ^ 2 + 20x + 2y ^ 2 - 22y - 2xy + 64 = - 10
Số giá trị nguyên của x thỏa mãn (3x-2)^2=64 là
Bài1: Giải phương trình sau:
(x2+5)(x2+10x)=6(2x-1)2
Bài 2:
a, Cho 1<=a,b,c<=3 thỏa mãn a2+b2+c2=19. Tìm giá trị nhỏ nhất của E=a+b+c.
b, Cho x,y,z>0 thỏa mãn điều kiện (x+y)(y+z)(z+x)=8. Chứng minh rằng (x+2y+z)(y+2z+x)(z+2y+x)>=64.
Bài 4: Cho các số tự nhiên a,b thỏa mãn điều kiện 2a2+a=6b2+b. Chứng minh rằng a-b, 2a+2b,2a+2a+1 đều là các số chính phương.
Bài 2. a/ \(1\le a,b,c\le3\) \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\), \(\left(c-1\right).\left(c-3\right)\le0\)
Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)
\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)
Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1
b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\)
Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)
Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay
\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)
khó lắm ai làm được tui chuyển 10k qa tài khoản ngân hàng =) nói là làm
Tìm số tự nhiên x biết: 42+x=64
=> 42+x = 4^3
=> 2+x = 3
=> x = 3 - 2 = 1
ta có:4^3=64
=>4^2+x=4^3=64
=>x=1
1.Tìm số tự nhiên x, biết a) x^3=7^3 b) x^3=27 c) x^3=125 d) ( x+1)^3=125 e) (x-2)^3=2^3 f) (x-2)^3=8 h) (x+2)^2=64 j) (x-3)^6=64 k) 9x^2=36 l) (x-1)^4=16 Giúp tớ vs
a: x^3=7^3
=>x^3=343
=>\(x=\sqrt[3]{343}=7\)
b: x^3=27
=>x^3=3^3
=>x=3
c: x^3=125
=>x^3=5^3
=>x=5
d: (x+1)^3=125
=>x+1=5
=>x=4
e: (x-2)^3=2^3
=>x-2=2
=>x=4
f: (x-2)^3=8
=>x-2=2
=>x=4
h: (x+2)^2=64
=>x+2=8 hoặc x+2=-8
=>x=6 hoặc x=-10
j: =>x-3=2 hoặc x-3=-2
=>x=1 hoặc x=5
k:
9x^2=36
=>x^2=36/9
=>x^2=4
=>x=2 hoặc x=-2
l:
(x-1)^4=16
=>(x-1)^2=4(nhận) hoặc (x-1)^2=-4(loại)
=>x-1=2 hoặc x-1=-2
=>x=3 hoặc x=-1