Cho các số nguyên dương x, y, z thỏa mãn \(x^2+y^2=z^2\). Chứng minh rằng:
\(x+3z-y\) là hợp số.
Hãy tìm một đơn thức với các biến là x,y thỏa mãn các điều kiện sau: - số mũ của x và y tỉ lệ với 2 và 3/2 - số mũ của x lớn hơn số mũ của y là 1 - giá trị của đơn thức tại x=2, y=-3 bằng 1296
Có bao nhiêu cặp số nguyên (x;y) thỏa mãn một trong các điều kiện sau :
\(a.\left|x\right|+\left|y\right|=20\) \(b.\left|x\right|+\left|y\right|< 20\) ?
Tìm số nguyên dương x,y thỏa mãn 21^x+16^y-10=(Căn 3)^y!, biết y!=1.2.3...y
Tìm các cặp số nguyên (x,y) thỏa mãn:
\(^{x^2+xy-2019x-2020y-2021=0}\)
Tìm các số nguyên dương x, y thỏa mãn điều kiện: 2x+2y=72
Cho 2 số x, y nguyên thỏa mãn (2x-3)2 + |y| = 1. Số cặp (x,y) thỏa mãn là ................. cặp
Tìm các số nguyên (x,y) thỏa mãn x²+xy-3y-5x+3=0
tìm số nguyên x,y thỏa mãn : (x+1)(y-1)=5