Những câu hỏi liên quan
LC
Xem chi tiết
NT
17 tháng 7 2021 lúc 21:01

a) \(\sqrt{0,16}+\sqrt{0,04}-\sqrt{0,25}\)

= 0,4 + 0,2 - 0,5 

= 0,1

b) \(\sqrt{85^2-84^2}-\sqrt{26^2-24^2}\)

\(\sqrt{\left(85-84\right)\left(85+84\right)}\) - \(\sqrt{\left(26-24\right)\left(26+24\right)}\)

\(\sqrt{169}\) - \(\sqrt{2.50}\)

= 13 - 10

= 3 

 Chúc bạn học tốt

Bình luận (0)
NT
17 tháng 7 2021 lúc 21:30

a) Ta có: \(\sqrt{0.16}+\sqrt{0.04}-\sqrt{0.25}\)

\(=0,4+0,2-0,5\)

=0,1

Bình luận (0)
NT
17 tháng 7 2021 lúc 21:31

b) Ta có: \(\sqrt{85^2-84^2}-\sqrt{26^2-24^2}\)

=13-10

=3

Bình luận (0)
HD
Xem chi tiết
DM
17 tháng 10 2021 lúc 10:09

1d 2a 3c 4b 5a

Bình luận (0)
NS
Xem chi tiết
NM
16 tháng 9 2021 lúc 17:12

\(=\sqrt{4+\sqrt{15}}\left(\sqrt{4+\sqrt{15}}\cdot\sqrt{4-\sqrt{15}}\right)\left(\sqrt{10}-\sqrt{6}\right)\\ =\sqrt{4+\sqrt{15}}\left(16-15\right)\left(\sqrt{10}-\sqrt{6}\right)\\ =\sqrt{2\left(4+\sqrt{15}\right)}\left(\sqrt{5}-\sqrt{3}\right)\\ =\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)\\ =\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=5-3=2\)

Bình luận (0)
NH
Xem chi tiết
NT
22 tháng 3 2021 lúc 19:52

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b) Thay x=0 vào A, ta được:

\(A=\dfrac{15\cdot\sqrt{0}-11}{0+2\sqrt{0}-3}-\dfrac{3\sqrt{0}-2}{\sqrt{0}-1}-\dfrac{2\sqrt{0}+3}{\sqrt{0}+3}\)

\(=\dfrac{-11}{-3}-\dfrac{-2}{-1}-\dfrac{3}{3}\)

\(=\dfrac{11}{3}-2-1\)

\(=\dfrac{11}{3}-\dfrac{9}{3}=\dfrac{2}{3}\)

Bình luận (1)
NN
Xem chi tiết
AH
23 tháng 8 2021 lúc 17:42

Lời giải:

\(=\frac{4(\sqrt{5}+1)}{(\sqrt{5}-1)(\sqrt{5}+1)}+\frac{-\sqrt{5}(\sqrt{7}-\sqrt{3})}{\sqrt{7}-\sqrt{3}}=\frac{4(\sqrt{5}+1)}{5-1}-\sqrt{5}=(\sqrt{5}+1)-\sqrt{5}=1\)

Bình luận (0)
NT
23 tháng 8 2021 lúc 23:08

\(\dfrac{4}{\sqrt{5}-1}+\dfrac{\sqrt{15}-\sqrt{35}}{\sqrt{7}-\sqrt{3}}\)

\(=\sqrt{5}+1-\sqrt{5}\)

=1

Bình luận (0)
TT
Xem chi tiết
HD
Xem chi tiết
NT
7 tháng 9 2021 lúc 21:09

Bài 5: 

a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:

\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)

b: Để E<1 thì E-1<0

\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\sqrt{x}-3< 0\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)

c: Để E nguyên thì \(4⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)

hay \(x\in\left\{16;25;49\right\}\)

Bình luận (0)
NT
7 tháng 9 2021 lúc 21:17

Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)

Thay \(x=\sqrt{3}-1\) vào \(B\), ta được

\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)

b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)

c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)

Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)

Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)

Vậy \(B_{min}=-2\) khi \(x=0\)

Bình luận (0)
NN
Xem chi tiết
CD
25 tháng 7 2018 lúc 20:31

a,\(x\ge0,x\ne49\)

Bình luận (0)
CH
Xem chi tiết