Cho a,b,c > 0.a+b+c=4
\(_{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}>2\sqrt{2}}\)
Ai giải dc thì lên thử đi
b1 cho a,b,c ko âm cmr
a)a+b+c\(\ge\)\(\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)\)
b)a+b+c+d+e\(\ge\)\(\sqrt{a}\left(\sqrt{b}+\sqrt{c}+\sqrt{d}+\sqrt{e}\right)\)
c)a+b+1\(\ge\)\(\sqrt{ab}+\sqrt{a}+\sqrt{b}\)
d)a+\(\sqrt{2a}+2\)>0
b2 sử dụng cô-si hoặc bu-nhia-cốp-xki
cho a,b,c thoả mãn a+b+c=1 cmr
a)\(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le3,5\)
b)\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
b3CMR
a)\(19>1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}>18\)
b)
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}< 1\)
bạn nào giải giúp mk vs 3 hm nx mk phải nộp r bạn nào giải dc con nào thì giải nhé thanks
Ai giải giúp mk với bt khó v :<
À mà chỉ giải bằng bđt AM-GM nhé, nếu có thêm bổ đề thì chứng minh chi tiết hộ mk :)
1. Cho ba số thực dương a,b,c thoả mãn a+b+c=3
CMR : \(a.\sqrt[3]{3-b+c}+b.\sqrt[3]{3-c+a}+c.\sqrt[3]{3-a+b}\le3.\sqrt[3]{3}\)
2. Cho 3 số thực dương a,b,c thoả mãn abc=2
CMR: \(a^3+b^3+c^3\ge a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\)
3. Cho 2 số thực dương x,y thoả mãn x+y+xy=3
CMR: \(\sqrt{\frac{x^2}{x^2+3}}+\sqrt{\frac{y^2}{y^2+3}}\le1\)
Cho a b c > 0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\). CMR \(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}\ge\sqrt[3]{a^2}+\sqrt[3]{b^2}+\sqrt[3]{c^2}\)
Cho a,b,c>0 tm a+b+c=5. \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\).
C/m\(\dfrac{\sqrt{a}}{2+a}+\dfrac{\sqrt{b}}{2+b}+\dfrac{\sqrt{c}}{2+c}=\dfrac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
Hai bài giống hệt nhau về cách làm:
Cho a, b, c > 0 thoả mãn: \(a b c=\sqrt{a} \sqrt{b} \sqrt{c}=2\). Chứng minh rằng: \(\dfrac{\sqrt{a}}{a 1} \dfrac{\sqrt{... - Hoc24
Cho a,b,c>0 thỏa a+b+c=4
CMR: \(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>2\sqrt{2}\)
Lời giải:
Vì \(a+b+c=4; b,c>0\Rightarrow a=4-b-c< 4\)
\(\Rightarrow a^4< 4a^3\)
\(\Rightarrow \frac{a^4}{4}< a^3\Rightarrow \frac{a}{\sqrt[4]{4}}< \sqrt[4]{a^3}\). Hoàn toàn tương tự:
\(\frac{b}{\sqrt[4]{4}}< \sqrt[4]{b^3}; \frac{c}{\sqrt[4]{4}}< \sqrt[4]{c^3}\)
Cộng theo vế:
\(\Rightarrow \sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}> \frac{a+b+c}{\sqrt[4]{4}}=\frac{4}{\sqrt[4]{4}}=2\sqrt{2}\)
Ta có đpcm.
giải gấp cho em bài này với ạ
cho a,b,c>0 thỏa mãn a+b+c=3.CM
\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le3\sqrt{2}\)
Cho các số dương a,b,c thỏa mãn a+b+c=4.Chứng minh \(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}\ge2\sqrt{2}\)
mai mk thi rồi ai chúc mk đi
sao mình không tìm được ra dấu '' = '' của bài này
à bài này mk làm được rồi mk đăng lên chơi thôi
Cho a,b,c là các số dương thỏa mãn a+b+c=3.Tìm GTNN của \(S=\sqrt[3]{\frac{a^2}{b}}+\sqrt[3]{\frac{b^2}{c}}+\sqrt[3]{\frac{c^2}{a}}\)
P/s:Bài này là em chế thử, em chưa có giải nên không biết có đúng không nữa
Đề chế sai rồi nhé! Cho dù là số 2 ở dưới mẫu của hay là đó là chữ a thì bài này vẫn không có min!
Tra Wolfram|Alpha để kiểm tra tính đúng đắn trước khi đăng nha! Trong wolfram alpha chỉ quan trọng ở chỗ (Global minima thôi, nó mà ra: "(no global minima found)" thì đề này sai đấy, cho dù bên dưới nó hiện cái gì đi nữa:))
1,Cho a,b,c>0 thỏa mãn a+b+c=abc.CMR:
\(\frac{bc}{a\left(1+bc\right)}+\frac{ca}{b\left(1+ca\right)}+\frac{ab}{c\left(1+ab\right)}\ge\frac{3\sqrt{3}}{4}\)
2,Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Tìm GTLN của P= \(\sqrt{\frac{a^2}{a^2+b+c}}+\sqrt{\frac{b^2}{b^2+c+a}}+\sqrt{\frac{c^2}{c^2+a+b}}\)
3,Cho a,b,c>0 thỏa mãn a+b+c=3.
Tìm GTLN của Q= \(2\sqrt{abc}\left(\frac{1}{\sqrt{3a^2+4b^2+5}}+\frac{1}{\sqrt{3b^2+4c^2+5}}+\frac{1}{\sqrt{3c^2+4a^2+5}}\right)\)
4,Cho a,b,c>0.
Tìm GTLN của P= \(\frac{\sqrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ca}}\)
ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Đặt: \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\)
=> \(P=\frac{xy}{z^2+3xy}+\frac{yz}{x^2+3yz}+\frac{zx}{y^2+3zx}\)
=> \(3P=\frac{3xy}{z^2+3xy}+\frac{3yz}{x^2+3yz}+\frac{3zx}{y^2+3zx}=1-\frac{z^2}{z^2+3xy}+1-\frac{x^2}{x^2+3yz}+1-\frac{y^2}{y^2+3zx}\)
Ta sẽ CM: \(3P\le\frac{9}{4}\)<=> Cần CM: \(\frac{x^2}{x^2+3yz}+\frac{y^2}{y^2+3zx}+\frac{z^2}{z^2+3xy}\ge\frac{3}{4}\)
Có: \(VT\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)
Ta sẽ CM: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{3}{4}\)
<=> \(4\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)
<=> \(4\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)
<=> \(x^2+y^2+z^2\ge xy+yz+zx\)
Mà đây lại là 1 BĐT luôn đúng => \(3P\le\frac{9}{4}\)=> \(P\le\frac{3}{4}\)
Vậy P max \(=\frac{3}{4}\)<=> \(a=b=c\)