Cho △ABC cân tại A, kéo dài BC về 2 phía (BM=CN). Chứng minh △ABM = △ACN
cho tam giác ABC dựng phía ngoài tam giác đó các tam giác ABM và ACN vuông cân tại A. gọi D,E,F lần lượt là trung điểm của MB,BC,CN. chứng minh a) BM=CN b) DEF vuông cân
Bài 5: Cho tam giác ABC có góc A nhọn. Vẽ về phía ngoài tam giác ABC hai tam giác ABM, ACN vuông cân tại A. Gọi E là giao điểm của BN và CM.
a) Chứng minh ABN = AMC và BN CM.
b) Cho BM =Căn bậc hai của 5 cm, CN căn bậc hai của 7= cm, BC căn bậc hai của 3= cm. Hãy tính độ dài đoạn thẳng MN.
Vì lười làm do quá dài nên em tham khảo bài sau nha:
Bài 2: Cho tam giác ABC cân tại A. Gọi M,N lần lượt là trung điểm của AC, AB.
a. Chứng minh BM=CN và ··ABM = ACN?
b. Gọi I là giao điểm của BM và CN. Chứng minh tam giác IBC cân?
c. Chứng minh AI là phân giác của góc A?
d. Chứng minh AI vuông góc với BC?
a/ Có AB = AC ( tam giácABC cân tại A) , mà M , N lan luot la trung điểm cua AC , AB Suy ra AM = AN Xét tam giác AMB và tam giác ANC có: Góc A : góc chung AB = AC ( tam giác ABC cân tại A) AM = AN ( cmt) Suy ra : tam giácAMB = tam giác ANC ( c - g - c) Suy ra BM = CN ( 2 cạnh t/ứng ) Phan b , c ,d mik đều làm đc nhunh giờ điện thoại mik hết pin rồi
. Cho tam giác ABC cân tại A. Trên các cạnh AC, AB lần lượt lấy M, N sao cho AM = AN.
a) Chứng minh tam giác ABM = tam giác ACN .
b) Chứng minh MN // BC.
c) Gọi O là giao điểm của BM và CN. Chứng minh tam giác OBC cân.
a) Xét tam giác ABM và tam giác ACN:
Góc A chung
AB = AC (do tam giác ABC cân tại A)
AM = AN (gt)
Suy ra: tam giác ABM = tam giác ACN (c g c)
b) Xét tam giác AMN có :
AM =AN (gt)
Suy ra: tam giác AMN cân tại A
Suy ra góc ANM = \(\dfrac{\text{180 - góc A}}{2}\)
mà góc ABC = \(\dfrac{\text{180 - góc A}}{2}\) ( do tam giác ABC cân tại A)
Suy ra: góc ANM = góc ABC
Mà 2 góc này ở vị trí đồng vị của MN và BC
Suy ra MN song song BC
a) Xét ΔABM và ΔACN có
AB=AC(ΔABC cân tại A)
\(\widehat{BAM}\) chung
AM=AN(gt)
Do đó: ΔABM=ΔACN(c-g-c)
b) Xét ΔAMN có AM=AN(gt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
hay \(\widehat{ANM}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{ANM}=\widehat{ABC}\)
mà \(\widehat{ANM}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
c) Ta có: ΔABM=ΔACN(cmt)
nên \(\widehat{ABM}=\widehat{ACN}\)(hai góc tương ứng)
Ta có: \(\widehat{ABM}+\widehat{CBM}=\widehat{ABC}\)(tia BM nằm giữa hai tia BA,BC)
\(\widehat{ACN}+\widehat{BCN}=\widehat{ACB}\)(tia CN nằm giữa hai tia CA,CB)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy trong ΔABC cân tại A)
và \(\widehat{ABM}=\widehat{ACN}\)(cmt)
nên \(\widehat{CBM}=\widehat{BCN}\)
hay \(\widehat{OBC}=\widehat{OCB}\)
Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)
nên ΔOBC cân tại O(Định lí đảo của tam giác cân)
Cho 🔺ABC CÂN tại A,Vẽ BM,CN lần lượt vuông góc vs AC và AB(M € AC, N € AB) CHỨNG MINH:
a)🔺ABM=🔺ACN
b)Gọi giao điểm của BM VÀ CN là I.Chứng minh 🔺IBC cân
c)Điểm H là trung điểm của BC,chứng minh A,I,H thẳng hàng.
Cho tam giác ABC có góc A nhọn. Vẽ về phía ngoài tam giác ABC hai tam giác ABM,ACN vuông cân tại A. Gọi E là giao diểm của BN và CM.
1.chứng minh:BN vuông góc CM.
2. cho BM=\(\sqrt{5}\)cm, CN=\(\sqrt{7}\)cm, BC=\(\sqrt{3}\)cm. Hãy tính độ dài đoạn thẳng MN.
Cho tam giác ABC cân tại A. Gọi M, N lần lượt là trung điểm của AC và AB.
a) Chứng minh BM = CN và góc ABM = góc ACN.
b) Gọi I là giao điểm của BM và CN. Chứng minh tam giác IBC cân.
c) Chứng minh AI là phân giác của góc A.
d) Chứng minh AI vuông góc BC
CM BNC=CMB
MC=BN ; \(\widehat{B}=\widehat{C}\) ; BC chung
\(\Rightarrow\)BM=CN
CM ABM=ACN
AB=AC ; AM=AN ; \(\widehat{A}\) chung
\(\Rightarrow\)ABM =ACN \(\Rightarrow\) \(\widehat{ABM}=\widehat{ACN}\)
b \(\widehat{ABM}=\widehat{ACN}\) \(\Rightarrow\)\(\widehat{ABI}=\widehat{ACI}\);
\(\Rightarrow\) \(\widehat{AMB}=\widehat{ANC}\)\(\Rightarrow\)\(\widehat{BMC}=\widehat{CNB}\)
Xét BIN vs CIM : BN=CM ; \(\widehat{ACM}=\widehat{ACN};\)\(\widehat{BMC}=\widehat{CNB}\)
\(\Rightarrow\) IB=IC \(\Rightarrow\)IBC cân
c, Xét AIB và AIC : IB =IC ; \(\widehat{ABI}=\widehat{ACI};AB=AC\)
\(\Rightarrow\) \(\widehat{BAI}=\widehat{CAI}\)\(\Rightarrow\)AI pg góc A
d, xét BAD và CAD
góc BAI = CAI ; AB=AC ; AD chung
\(\Rightarrow\)góc ADB = ADC mà chúng cộng nhau = 180 \(\Rightarrow\)\(\widehat{D}\)= 90
Cho tam giác ABC nhọn. Vẽ ra phía ngoài tam giác đó các tam giác ABM và ACN vuông cân tại A. BN và MC cắt nhau tại D
a) Chứng minh: Tam giác AMC= Tam giác ABN
b)Chứng minh: BN Vuông góc với CM
c) Cho BM = 3cm; BC=2cm, CN = 4cm. Tính MN
d) Chứng minh DA là phân giác góc MDN
a) xét tg AMC và tg ABN có
MA=BA(gt)
CA=AN(gt)
ˆMAC=ˆBAN(doˆMAB+ˆBAC=ˆNAC+ˆBAC)MAC^=BAN^(doMAB^+BAC^=NAC^+BAC^)
=>(kết luận)...
b)gọi I là giao điểm của MC và BN
gọi giao điểm của BA và MI là F
vì ΔAMC=ΔABNΔAMC=ΔABNnên
ˆFMA=ˆFBIFMA^=FBI^
mà ˆFMA+ˆFMB=45OFMA^+FMB^=45O
=>ˆFBI+ˆIMB=45OFBI^+IMB^=45O
Xét ΔIMBΔIMBcó góc ˆIMB+ˆMBI+ˆBIMIMB^+MBI^+BIM^= 180O
Mà ˆIMB+ˆMBIIMB^+MBI^=900
=>...
Cho tam giác ABC cân tại A, kẻ BM vuông góc với AC (M thuộc AC), kẻ CN vuông góc với AB (N thuộc AB).
A) chứng minh: tam giác ABM = tam giác ACN và BM=CN
B) Biết góc ABM = 30 độ. chứng minh tam giác ABC đều.
các bạn giúp mình với.