Giải bất phương trình
3x\(^3\) - 5x\(^2\) - x - 2>0
1)giải phương trình
3x-15 = 2x ( x- 5)
(2x+1)^2 - ( x-1)^2= 0
3x-15= 2x( x-5)
⇔ 3x -15 = 2x² -10x
⇔ 3x -2x² +10x -15 = 0
⇔ -2x² +13x -15 = 0
⇔ -2x² +10x +3x -15 = 0
⇔ -2x(x -5) +3(x-5) = 0
⇔ (x-5).(-2x +3) = 0
TH1: x-5 = 0 ⇔ x = 5
TH2: -2x+3 = 0 ⇔ x= 3/2
Vậy S= {5; 3/2}
Giải phương trình
3x−x(x−2)=−(x+1)^2
\(3x-x\left(x-2\right)=-x\left(x+1\right)^2\)
\(\Leftrightarrow3x-x^2+2x=-x^2-2x-1\)
\(\Leftrightarrow-x^2+x^2+3x+2x+2x+1=0\)
\(\Leftrightarrow7x+1=0\)
\(\Leftrightarrow x=-\dfrac{1}{7}\)
Vậy \(S=\left\{-\dfrac{1}{7}\right\}\)
Giải phương trình
3x−x(x−2)=−(x+1)^2
\(3x-x\left(x-2\right)=-\left(x+1\right)^2\)
\(\Leftrightarrow3x-x^2+2x=-\left(x^2+2x+1\right)\)
\(\Leftrightarrow5x-x^2=-x^2-2x-1\)
\(\Leftrightarrow-x^2+x^2+5x+2x=-1\)
\(\Leftrightarrow7x=-1\)
\(\Leftrightarrow x=\left(-1\right)\div7\)
\(\Leftrightarrow x=-\dfrac{1}{7}\)
Ko bt đúng or sai :>
3x -x(x-2)= -(x+1)^2
<=>3x -x^2 +2x= -x^2-2x -1
<=> -x^2 +x^2 +5x +2x=-1
<=>7x= -1
<=>x= -1/7
Giải các bất phương trình sau: a)/x+2/>3 b)(x+3)(x^2-5x+6)>0 c)/3x+4/0
tính A=\(\dfrac{\sqrt{2+\sqrt{3}}}{\sqrt{2}}\)
giải hệ phương trình
3x-6y=1959 và x+7y=2019
Giải HPT:
\(\left\{{}\begin{matrix}3x-6y=1959\\x+7y=2019\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-6y=1959\\3x+21y=6057\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}27y=4098\\x+7y=2019\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\approx152\\x=955\end{matrix}\right.\)
Mik chỉ làm gần bằng đc thôi vì y là số thập phân.
1) \(A=\dfrac{\sqrt{2+\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{4+2\sqrt{3}}}{2}=\dfrac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2}=\dfrac{\sqrt{3}+1}{2}\)
2) \(\left\{{}\begin{matrix}3x-6y=1959\\x+7y=2019\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x-6y=1959\\3x+21y=6057\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+7y=2019\\27x=4098\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{8609}{9}\\y=\dfrac{1366}{9}\end{matrix}\right.\)
giải các bất phương trình tích và các bất phương trình thương
b/ \(\dfrac{3x+5}{2x^2-5x+3}\)≥0
c/2x3+x+3>0
Lời giải:
b/
\(\frac{3x+5}{2x^2-5x+3}\geq 0\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} 3x+5\geq 0\\ 2x^2-5x+3>0\end{matrix}\right.\\ \left\{\begin{matrix} 3x+5\leq 0\\ 2x^2-5x+3<0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\geq \frac{-5}{3}\\ x>\frac{3}{2}(\text{hoặc}) x< 1\end{matrix}\right.\\ \left\{\begin{matrix} x\leq \frac{-5}{3}\\ 1< x< \frac{3}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow \left[\begin{matrix} x>\frac{3}{2}\\ \frac{-5}{3}\leq x< 1\end{matrix}\right.\ \)
c/
$2x^3+x+3>0$
$\Leftrightarrow 2x^2(x+1)-2x(x+1)+3(x+1)>0$
$\Leftrightarrow (x+1)(2x^2-2x+3)>0$
$\Leftrightarrow (x+1)[x^2+(x-1)^2+2]>0$
$\Leftrightarrow x+1>0$
$\Leftrightarrow x>-1$
Giải bất phương trình sau : a/ 2x ^ 2 + 6x - 8 < 0 x ^ 2 + 5x + 4 >=\ 2) Giải phương trình sau : a/ sqrt(2x ^ 2 - 4x - 2) = sqrt(x ^ 2 - x - 2) c/ sqrt(2x ^ 2 - 4x + 2) = sqrt(x ^ 2 - x - 3) b/ x ^ 2 + 5x + 4 < 0 d/ 2x ^ 2 + 6x - 8 > 0 b/ sqrt(- x ^ 2 - 5x + 2) = sqrt(x ^ 2 - 2x - 3) d/ sqrt(- x ^ 2 + 6x - 4) = sqrt(x ^ 2 - 2x - 7)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
1, Giải phương trình :\(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=1\)
2, Giải bất phương trình :\(2x^3-5x^2+5x-3< 0\)
x-1 + x-3 =1 <=> 2x -4=1 tu giai not