Những câu hỏi liên quan
KN
Xem chi tiết
HH
7 tháng 2 2017 lúc 11:37

tớ chỉ làm cho cậu 1 cái thôi, còn lại cậu tự giải tương tự

Đặt d= ƯCLN (2n+1, 2n+3)

\(\Rightarrow2n+1⋮d\)\(3n+2⋮d\)

=>\(3\left(2n+1\right)⋮d\)\(2\left(3n+2\right)⋮d\)

\(\Rightarrow6n+3⋮d\)\(6n+4⋮d\)

=>6n+4 - (6n+3) \(⋮d\)

=>\(1⋮d\)

=>d=1

Vậy cặp số trên nguyên tố cùng nhau với mọi STN n

Bình luận (2)
PA
Xem chi tiết
SL
25 tháng 10 2017 lúc 17:20

a) Gọi d là ƯCLN (n+1,3n+4), d thuộc N*

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n+1\right)⋮d\\3n+4⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3n+3⋮d\\3n+4⋮d\end{cases}}}\)

\(\Rightarrow\left(3n+4\right)-\left(3n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n+1,3n+4\right)=1\)

Vậy n+1 và 3n+4 là hai số nguyên tố cùng nhau.

b) Gọi d là ƯCLN(2n+3,4n+8), d thuộc N*

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow\)d bằng 1 hoặc d bằng 2

Mà 2n+3 không chia hết cho 2 \(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)

Vậy 2n+3 và 4n+8 là hai số nguyên tố cùng nhau.

Bình luận (0)
PC
24 tháng 1 2018 lúc 20:24
a, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*) Ta có: ⎧ ⎨ ⎩ n + 1 ⋮ d 2 n + 3 ⋮ d ⇒ ⎧ ⎨ ⎩ 2 n + 2 ⋮ d 2 n + 3 ⋮ d {n+1⋮d2n+3⋮d⇒{2n+2⋮d2n+3⋮d ⇒ 2 n + 3 − ( 2 n + 2 ) ⋮ d ⇒2n+3−(2n+2)⋮d ⇒ 1 ⋮ d ⇒1⋮d => d = 1 => đpcm b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*) ta có: ⎧ ⎨ ⎩ 2 n + 3 ⋮ d 4 n + 8 ⋮ d ⇒ ⎧ ⎨ ⎩ 4 n + 6 ⋮ d 4 n + 8 ⋮ d {2n+3⋮d4n+8⋮d⇒{4n+6⋮d4n+8⋮d ⇒ 4 n + 8 − ( 4 n + 6 ) ⋮ d ⇒4n+8−(4n+6)⋮d ⇒ 2 ⋮ d ⇒2⋮d ⇒ d ∈ { 1 ; 2 } ⇒d∈{1;2} Mà 2n + 3 là số lẻ => d = 1 => đpcm c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*) Ta có: ⎧ ⎨ ⎩ 3 n + 2 ⋮ d 5 n + 3 ⋮ d ⇒ ⎧ ⎨ ⎩ 15 n + 10 ⋮ d 15 n + 9 ⋮ d {3n+2⋮d5n+3⋮d⇒{15n+10⋮d15n+9⋮d ⇒ 15 n + 10 − ( 15 n + 9 ) ⋮ d ⇒15n+10−(15n+9)⋮d ⇒ 1 ⋮ d ⇒1⋮d => d = 1 => đpcm Đúng Bình luận Báo cáo sai phạm Thu gọn
Bình luận (0)
MN
Xem chi tiết
KL
19 tháng 8 2023 lúc 16:24

Gọi d là ƯCLN(4n + 5; 2n + 2)

⇒ (4n + 5) ⋮ d

(2n + 2) ⋮ d ⇒ 2(2n + 2) ⋮ d ⇒ (4n + 4) ⋮ d

⇒ [(4n + 5) - (4n + 4)] ⋮ d

⇒ (4n + 5 - 4n - 4) ⋮ d

⇒ 1 ⋮ d

⇒ d = 1

Vậy 4n + 5 và 2n + 2 là hai số nguyên tố cùng nhau

Bình luận (0)
NH
19 tháng 8 2023 lúc 16:24

Gọi ước chung lớn nhất của 4n + 5 và 2n + 2 là: d

Ta có:  4n + 5 ⋮ d

            2n + 2 ⋮ d

       ⇒ 2.(2n+ 2) ⋮ d ⇒ 4n + 4  ⋮ d

        ⇒  4n + 5 - (4n + 4) ⋮ d

             4n + 5  - 4n - 4 ⋮ d 

                                 1 ⋮ d ⇒ d = 1

Ước chung lớn nhất của 4n + 5 và 2n + 2 là 1

Hay 4n + 5 và 2n + 2 là hai số nguyên tố cùng nhau

 

 

 

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 10 2017 lúc 3:36

Bình luận (0)
AN
Xem chi tiết
NK
18 tháng 1 2016 lúc 21:46

Gọi UCLN(2n + 3; 4n + 8) là d

=> 2n + 3 chia hết cho d => 4n + 6 chia hết cho d

     4n + 8chia hết cho d => 4n + 6 + 2 chia hét cho d

=> 2 chia hết cho d

=> d thuộc {1; 2}

Mà 2n + 3 lẻ => d lẻ => d = 1

=> UCLN(2n + 3; 4n + 8) = 1

Vậy...

Bình luận (0)
NT
Xem chi tiết
DL
8 tháng 12 2018 lúc 14:10

Đặt (2n+3;4n+8)=d

=>2n+3 chia hết cho d

    4n+8 chia hết cho d

Do đó 2(2n+3) chia hết cho d

mà 4n+8 chia hết cho d

=>4n+8-4n-6 chia hết cho d

=> 2 chia hết cho d

=> d thuộc {1;2}

=>d=1

Vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau

b) Bạn giải tương tự câu a nhé

Bình luận (0)
GH
Xem chi tiết
RH
2 tháng 10 2021 lúc 22:29

a) Gọi d=(2n+3; 3n+4)

Ta có: 2n+3 và 3n+4 chia hết cho d

--> 6n+9 và 6n+8 chia hết cho d

--> (6n+9)-(6n+8) chia hết cho d

--> 1 chia hết cho d

--> d = 1

--> 2n+3 và 3n+4 nguyên tố cùng nhau

Bình luận (0)
NT
2 tháng 10 2021 lúc 22:29

a: Gọi d là UCLN của 2n+3 và 3n+4

\(\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\Leftrightarrow d=1\)

=> UCLN(2n+3;3n+4)=1

hay 2n+3;3n+4 là hai số nguyên tố cùng nhau

Bình luận (0)
LL
2 tháng 10 2021 lúc 22:29

a) Gọi d là UCLN (2n+3;3n+4)

\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+4⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\)

\(\Rightarrow6n+9-6n-8⋮d\Rightarrow1⋮d\)

Vậy 2n+3 và 3n+4 là 2 số nguyên tố cùng nhau

b) Gọi d là UCLN(3n+4;4n+5)

\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\4n+5⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}12n+16⋮d\\12n+15⋮d\end{matrix}\right.\)

\(\Rightarrow12n+16-12n-15⋮d\Rightarrow1⋮d\)

Vậy 3n+4 và 4n+5 là 2 số nguyên tố cùng nhau

Bình luận (0)
TM
Xem chi tiết
HL
Xem chi tiết
NT
16 tháng 5 2023 lúc 13:06

Gọi d=ƯCLN(2n+5;4n+8)

=>4n+10-4n-8 chia hết cho d

=>2 chia hết cho d

mà 2n+5 lẻ

nên d=1

=>ĐPCM

Bình luận (0)