Những câu hỏi liên quan
NK
Xem chi tiết
NT
10 tháng 7 2021 lúc 10:34

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

Ta có: \(T=\dfrac{x+6\sqrt{x}+9}{\sqrt{x}+3}-\dfrac{x-4}{\sqrt{x}-2}\)

\(=\sqrt{x}+3-\sqrt{x}-2\)

=1

Bình luận (0)
H24
10 tháng 7 2021 lúc 10:36

Để T có nghĩa 

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}+3\ne0\\\sqrt{x}-2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

\(T=\dfrac{x+6\sqrt{x}+9}{\sqrt{x}+3}-\dfrac{x-4}{\sqrt{x}-2}=\dfrac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}+3}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-2}=\sqrt{x}+3-\left(\sqrt{x}+2\right)=1\)

Bình luận (0)
H24
Xem chi tiết
NT
Xem chi tiết
H24
25 tháng 6 2023 lúc 14:00

\(A=\left(\dfrac{3x-x^2}{9-x^2}-1\right):\left(\dfrac{9-x^2}{x^2+x-6}+\dfrac{x-3}{2-x}-\dfrac{x+2}{x+3}\right)\left(dk:x\ne\pm3,x\ne2\right)\)

\(=\dfrac{3x-x^2-9+x^2}{9-x^2}:\left(\dfrac{9-x^2}{\left(x-2\right)\left(x+3\right)}-\dfrac{x-3}{x-2}-\dfrac{x+2}{x+3}\right)\)

\(=\dfrac{3x-9}{9-x^2}:\dfrac{9-x^2-\left(x-3\right)\left(x+3\right)-\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}\)

\(=-\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}.\dfrac{\left(x-2\right)\left(x+3\right)}{9-x^2-\left(x^2-9\right)-\left(x^2-4\right)}\)

\(=-\dfrac{3}{x+3}.\dfrac{\left(x-2\right)\left(x+3\right)}{9-x^2-x^2+9-x^2+4}\)

\(=\dfrac{-3\left(x-2\right)}{22-3x^2}\)

\(=\dfrac{-3x+6}{22-3x^2}\)

Vậy \(A=\dfrac{-3x+6}{22-3x^2}\) với \(x\ne\pm3,x\ne2\)

Bình luận (0)
VV
Xem chi tiết
DH
29 tháng 6 2021 lúc 18:25

a) \(\dfrac{3-\sqrt{x}}{x-9}=\dfrac{-\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\dfrac{1}{\sqrt{x+3}}\)(\(x\ge0,x\ne9\))

b) \(\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-3}=\sqrt{x}-2\left(x\ge0,x\ne9\right)\)

 

Bình luận (4)
AT
29 tháng 6 2021 lúc 18:29

a) \(\dfrac{3-\sqrt{x}}{x-9}=\dfrac{3-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\dfrac{1}{\sqrt{x}+3}\)

b) \(\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\sqrt{x}-2\)

c) \(6-2x-\sqrt{9-6x+x^2}=6-2x-\sqrt{\left(3-x\right)^2}=6-2x-\left|3-x\right|\)

mà \(x< 3\Rightarrow3-x>0\Rightarrow6-2x-\left|3-x\right|=6-2x-3+x=3-x\)

Bình luận (0)
TK
29 tháng 6 2021 lúc 18:28

a,\(\dfrac{3-\sqrt{x}}{x-9}\)

=\(-\dfrac{3-\sqrt{x}}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)

=\(-\dfrac{1}{3+\sqrt{x}}\)

Bình luận (0)
IC
Xem chi tiết
BF
Xem chi tiết
NT
4 tháng 7 2021 lúc 20:38

Ta có: \(\left(\dfrac{x^2-3x}{x^2-9}-1\right):\left(\dfrac{9-x^2}{x^2+x-6}-\dfrac{x-3}{2-x}+\dfrac{x-2}{x+3}\right)\)

\(=\left(\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-1\right):\left(\dfrac{9-x^2+x^2-9+\left(x-2\right)^2}{\left(x-2\right)\left(x+3\right)}\right)\)

\(=\left(\dfrac{x}{x+3}-1\right):\dfrac{x-2}{x+3}\)

\(=\dfrac{x-x-3}{x+3}\cdot\dfrac{x+3}{x-2}\)

\(=\dfrac{-3}{x-2}\)

Bình luận (0)
H24
4 tháng 7 2021 lúc 20:40

Điều kiện : x ≠ 2 ; x ≠ 3 ; x ≠ - 3

\(\left(\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-1\right):\left(\dfrac{\left(3-x\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}-\dfrac{x-3}{2-x}+\dfrac{x-2}{x+3}\right)\)

\(=\left(\dfrac{x}{x+3}-1\right):\left(\dfrac{9-x^2+\left(x-3\right)\left(x+3\right)+\left(x-2\right)^2}{\left(x-2\right)\left(x+3\right)}\right)\)

\(=\dfrac{x-x-3}{x+3}:\dfrac{9-x^2+x^2-9+\left(x-2\right)^2}{\left(x-2\right)\left(x+3\right)}\)

\(=\dfrac{-3}{x+3}:\dfrac{x-2}{\left(x+3\right)}\)

\(=\dfrac{-3}{x-2}\)

Bình luận (0)
NN
Xem chi tiết
H24
Xem chi tiết
H24
18 tháng 6 2023 lúc 15:30

\(\left(\dfrac{3\sqrt{x}+6}{x-4}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\right):\dfrac{x-9}{\sqrt{x}-3}\left(dkxd:x\ne9,x\ne4,x\ge0\right)\)

\(=\left(\dfrac{3\sqrt{x}+6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\right):\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}-3}\)

\(=\left(\dfrac{3\sqrt{x}+6+\sqrt{x}\left(\sqrt{x}+2\right)}{(\sqrt{x}-2)\left(\sqrt{x}+2\right)}\right).\dfrac{1}{\sqrt{x}+3}\)

\(=\dfrac{3\sqrt{x}+6+x+2\sqrt{x}}{x-4}.\dfrac{1}{\sqrt{x}+3}\)

\(=\dfrac{x+5\sqrt{x}+6}{x-4}.\dfrac{1}{\sqrt{x}+3}\)

\(=\dfrac{x+2\sqrt{x}+3\sqrt{x}+6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{1}{\sqrt{x}+3}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{1}{\sqrt{x}+3}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{1}{\sqrt{x}+3}\)

\(=\dfrac{1}{\sqrt{x}-2}\)

Bình luận (0)
TN
Xem chi tiết