tam giác ABC có A=90*, AB=\(\sqrt{88}\)cm, AC=6cm, K là trung điểm AC.Tính BC
Cho tam giác vuông ABC có cạnh huyền AB=√88 cm . Cạnh BC = 6cm Gọi K là trung điểm của AC . Tính độ dài BK
Tự vẽ hình nhé?
Xét tam giác ABC vuông tại A, có:
AB mũ 2 + AC mũ 2 = BC mũ 2 ( Pytago )
Căn 88 mũ 2 + AC mũ 2 = 6 mũ 2
88 + AC mũ 2 = 36
AC mũ 2 = 36 - 88
AC mũ 2 = -52
=> AC = - căn 52 = -2 căn 13 ( cm )
Vì K là trung điểm AC => KA = KC = -2 căn 13 : 2 = - căn 13 ( cm )
Xét tam giác ABK vuông tại A, có:
AB mũ 2 + AK mũ 2 = BK mũ 2 ( Pytago )
căn 88 mũ 2 + trừ căn 13 mũ 2 = BK mũ 2
88 + trừ căn 13 = 88 - căn 13
=> BK xấp xỉ 9,2 ( cm )
Nói chung là bài này làm 2 lần Pytago là ra. Đọc kĩ nhé vì không dùng đc kí tự của OLM nên phải viết thế :((( Không hiểu ibx nha
Cho tam giác abc có ab=9cm ,ac=12cm. Trên cạnh ab lấy điểm H trên cạnh ac lấy điểm K sao cho ah=6cm, ak=8cm
a) cm hk//bc
b)cho biết bc=18cm, Tính HK
c) kẻ trung tuyến am của tam giác abc (M thuộc bc) am cắt hk tại i. Cm i là trung điểm hk
giải với vẽ hình cho mình với
a: Xét ΔABC có AH/AB=AK/AC
nên HK//BC
b: Xet ΔABC có HK//BC
nên AH/AB=HK/BC
=>HK/18=6/9=2/3
=>HK=12(cm)
c: Xét ΔABM có HI//BM
nên HI/BM=AI/AM
Xét ΔAMC có IK//MC
nên IK/MC=AI/AM
=>HI/BM=IK/MC
mà BM=CM
nên HI=IK
=>I là trung điểm của HK
a) APĐL ta lét vào ΔABC ta có :
\(\dfrac{AH}{AB}=\dfrac{AK}{AC}=\dfrac{2}{3}\Rightarrow KH//BC\)
b) Xét ΔABC có: KH // BC
\(\dfrac{AH}{AB}=\dfrac{KH}{BC}=\dfrac{2}{3}\)
\(\Rightarrow\dfrac{KH}{18}=\dfrac{6}{9}\Rightarrow KH=12\left(cm\right)\)
c)Theo bài ra ta có : M là trung điểm của BC => BM = CM (1)
xét tam giác ABC có :
HI//BC ( KH//BC)
\(\Rightarrow\dfrac{AI}{AM}=\dfrac{HI}{BM}\) (2)
Xét Tam giác ABC có:
KI//BC (KH//BC)
\(\Rightarrow\dfrac{AI}{AM}=\dfrac{KI}{CM}\) (3)
Từ (1) (2) và (3) => KI=HI => I là trung điểm của KH
Cho tam giác ABC vuông tại A có AB = 6cm; BC = 10 cm; AC = 8cm. a)So sánh các góc của tam giác ABC. b)Trên tia đối của tia AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD. Gọi K là trung điểm của cạnh BC, đường thẳng DK cắt cạnh AC tại M. Tính MC. c) Đường trung trực d của đoạn thẳng AC cắt đường thẳng DC tại Q. Chứng minh ba điểm B, M, Q thẳng hàng.
Cho tam giác ABC có AB=AC=\(\sqrt{5}\) cm,độ dài đường cao AH=\(\sqrt{3}\) cm .Gọi M,N lần lượt là trung điểm của HC và AC.Tính độ dài đoạn thẳng AM và BN
Do AH là đường cao trong tam giác ABC cân tại A nên AH cùng là đường trung tuyến
\(\Rightarrow\)H là trung điểm của BC
Áp dụng định lý py-ta-go vào tam giác vuông AHC có:
\(HC=\sqrt{AC^2-AH^2}=\sqrt{2}\left(cm\right)\)
Do M là trung điểm của HC\(\Rightarrow HM=\dfrac{HC}{2}=\dfrac{\sqrt{2}}{2}\) (cm)
Áp dụng định lý py-ta-go vào tam giác AMH vuông có:
\(AH^2+HM^2=AM^2\)
\(\Leftrightarrow AM=\sqrt{AH^2+HM^2}=\sqrt{3+\dfrac{1}{2}}=\dfrac{\sqrt{14}}{2}\left(cm\right)\)
Có M và H lần lượt là tđ của HC và CA
Suy ra MN là đường trung bình của tam giác AHC
\(\Rightarrow\) MN//AH và \(MN=\dfrac{AH}{2}=\dfrac{\sqrt{3}}{2}\)(cm)
Vì \(AH\perp BC\)\(\Rightarrow MN\perp BC\)
Áp dụng định lý py-ta-go vào tam giác BNM vuông có:
\(BN^2=MN^2+BM^2=\dfrac{3}{4}+\left(BC-MC\right)^2=\dfrac{3}{4}+\left(2HC-HM\right)^2=\dfrac{3}{4}+\dfrac{9}{2}=\dfrac{21}{4}\)
\(\Rightarrow BN=\dfrac{\sqrt{21}}{2}\) (cm)
Vậy...
Bạn nào giúp em với em sắp nộp bài rùi ạ!
\(AB=AC\Rightarrow\Delta ABC\) cân tại A \(\Rightarrow\) AH là đường cao đồng thời là trung tuyến hay H là trung điểm BC
\(\Rightarrow BH=CH\)
Pitago cho tam giác ACH: \(CH=\sqrt{AC^2-AH^2}=\sqrt{2}\)
\(\Rightarrow HM=\dfrac{1}{2}CH=\dfrac{\sqrt{2}}{2}\) \(\Rightarrow BM=BH+HM=CH+HM=\dfrac{3\sqrt{2}}{2}\)
Pitago tam giác AHM: \(AM=\sqrt{AH^2+HM^2}=\dfrac{\sqrt{14}}{2}\)
Do N là trung điểm AC, M là trung điểm HC \(\Rightarrow MN\) là đường trung bình tam giác ACH
\(\Rightarrow\left\{{}\begin{matrix}MN||AH\Rightarrow MN\perp BC\\MN=\dfrac{1}{2}AH=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)
Pitago tam giác BMN: \(BN=\sqrt{BM^2+MN^2}=\dfrac{\sqrt{21}}{2}\)
Cho tam giác vuông ABC vuông tại A, biết AB= 6cm, AC=8 cm. M là trung điểm của BC kẻ ME vuông góc AC( E thuộc AC), MD vuông góc AB( D thuộc AB)
a) tính BC và diện tích của tam giác ABC?
b) tứ giác ADME là hình gì? vì sao?
c) gọi K là trung điểm của MD. chứng minh 3 điểm B, K, E thẳng hàng
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)
b: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
c: Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó E là trung điểm của AC
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
=>ME//BD và ME=BD
=>MEDB là hình bình hành
=>MD cắtEB tại trung điểm của mỗi đường
=>B,K,E thẳng hàng
cho tam giác ABC vuông tại A. có AB=6cm; BC=10cm.
a, tính độ dài cạnh AC và so sánh các góc trong tam giác ABC.
b, trên tia đối của AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD, cm: tam giác BCD cân.
c, Gọi K là trung điểm của cạnh BC, đường thẳng DK cắt AC tại M. Tính MC.
d, đường trung trực d của đoạn thẳng AC cắt đường thẳng DC tại Q, cm 3 điểm B,M,Q thẳng hàng
a, Ta có : ∆ ABC vuông tại A ( gt)
-> BC^2 = AB^2 + AC^2 ( đ/lí Pytago )
-> AC^2 = BC^2 - AB^2
Mà BC = 10 cm ( gt ) ; AB= 6 cm ( gt)
Nên AC^2 = 10^2 - 6^2
-> AC^2 = 100- 36
-> AC^2 = 64
-> AC = 8 cm
cho tam giác ABC vuông tại A. có AB=6cm; BC=10cm.
a, tính độ dài cạnh AC và so sánh các góc trong tam giác ABC.
b, trên tia đối của AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD, cm: tam giác BCD cân.
c, Gọi K là trung điểm của cạnh BC, đường thẳng DK cắt AC tại M. Tính MC.
d, đường trung trực d của đoạn thẳng AC cắt đường thẳng DC tại Q, cm 3 điểm B,M,Q thẳng hàng
cho tam giác ABC có AB=6cm, AC=8cm, BC=10cm
a. CM: ABC là tam giác vuông
b.Gọi M là trung điểm BC kẻ MH vuông góc AC. Lấy K đối xứng H qua M. CM: BKCH là hình bình hành và ABKH là hình chữ nhật
c.CM: G là trọng tâm của tam giác ABC