Chứng minh đa thức f(x) = -4x4 + 3x3 - 2x2 + x - 1 không có nghiệm nguyên.
Kiểm tra xem giá trị x = -2 có là nghiệm của bất phương trình sau không?
a) x + 2x2 – 3x3 + 4x4 – 5 < 2x2 – 3x3 + 4x4 – 6;
b) (-0,001)x > 0,003.
a) x + 2x2 - 3x3 + 4x4 - 5 < 2x2 - 3x3 + 4x4 - 6
⇔ x < 2x2 - 3x3 + 4x4 - 6 - 2x2 + 3x3 - 4x4 + 5 (chuyển vế - đổi dấu)
⇔ x < -1 (*)
Vì -2 < -1 nên -2 là nghiệm của bất phương trình
Vậy x = -2 là nghiệm của bất phương trình.
b) (-0,001)x > 0,003
⇔ x < -3 (chia cả hai vế cho -0,001)
Vì -2 > -3 nên -2 không phải nghiệm của bất phương trình
Vậy x = -2 không là nghiệm của bất phương trình.
Câu 7. Sắp xếp các hạng tử của đa thức
dần của biến.
P(x) = 10 - 4x4 + 3x3 - 2x2 + x
theo lũy thừa giảm
A. P(x) = 10 + x - 2x2 + 3x3 - 4x4 . B.
C. P(x) = -4x4 - 2x2 + 3x3 + x +10 . D.
P(x) = -4x4 + 3x3 - 2x2 + x +10 .
P(x) = 3x3 + x +10 - 2x2 - 4x4 .
Câu 8. Sắp xếp các hạng tử của đa thức
tăng dần của biến.
P(x) = 3x2 -10 + 2x3 + 4x + x4
theo lũy thừa
A. P(x) = -10 + x4 + 2x3 + 3x2 . B.
C. P(x) = -10 + 4x + 3x2 + 2x3 + x4 . D.
P(x) = x4 + 2x3 + 3x2 + 4x -10 .
P(x) = x4 + 3x2 + 2x3 + 4x -10 .
Câu 9. Bậc của đơn thức 3y2 (2y2 )3 y là
A. 6 . B. 7 . C. 8 . D. 9 .
Câu 10. Hệ số cao nhất của
P(x) = x4 + 3x2 + 2x3 + 4x -10 là
A. 1 . B. 3 . C. 4 . D.
-10 .
Câu 11. Thu gọn đa thức x3 - 5y2 + x + x3 - y2 - x ta được
A. x6 - 6y4 . B.
x6 - 4y4 . C.
2x3 - 6y2 . D. 2x3 - 4y2 .
Câu 7. Sắp xếp các hạng tử của đa thức
giảm dần của biến.
P(x) = 10 - 4x4 + 3x3 - 2x2 + x
theo lũy thừa giảm
A. P(x) = 10 + x - 2x2 + 3x3 - 4x4 . B.
C. P(x) = -4x4 - 2x2 + 3x3 + x +10 . D.
P(x) = -4x4 + 3x3 - 2x2 + x +10 .
P(x) = 3x3 + x +10 - 2x2 - 4x4 .
Câu 8. Sắp xếp các hạng tử của đa thức
tăng dần của biến.
P(x) = 3x2 -10 + 2x3 + 4x + x4
theo lũy thừa
A. P(x) = -10 + x4 + 2x3 + 3x2 . B.
C. P(x) = -10 + 4x + 3x2 + 2x3 + x4 . D.
P(x) = x4 + 2x3 + 3x2 + 4x -10 .
P(x) = x4 + 3x2 + 2x3 + 4x -10 .
Câu 9. Bậc của đơn thức 3y2 (2y2 )3 y là
A. 6 . B. 7 . C. 8 . D. 9 .
Câu 10. Hệ số cao nhất của
P(x) = x4 + 3x2 + 2x3 + 4x -10 là
A. 1 . B. 3 . C. 4 . D.
-10 .
Câu 11. Thu gọn đa thức x3 - 5y2 + x + x3 - y2 - x ta được
A. x6 - 6y4 . B.
x6 - 4y4 . C.
2x3 - 6y2 . D. 2x3 - 4y2 .
cho đa thức f(x)=2x6+3x2+5x3-2x2+4x4+x4+1-4x3-x4
a) thu gọn , sắp xếp theo lũy thừa tăng dần , chỉ ra hệ số cao nhất , bậc và hệ số tự do của đa thức
b) tính f(-1)
c) chứng tỏ đa thức f(x) không nghiệm
a) \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4+x^4+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(4x^4+x^4-x^4\right)+\left(5x^3-4x^3\right)+\left(3x^2-2x^2\right)+1\)
\(f\left(x\right)=1+x^2+x^3+4x^4+2x^6\)
Hệ số cao nhất là 4, đa thức có bậc là 6, hệ số tự do là 1
b) Khi \(f\left(-1\right)\) thì đa thức trở thành:
\(f\left(-1\right)=2.\left(-1\right)^6+4.\left(-1\right)^4+\left(-1\right)^3+\left(-1\right)^2+1\)
\(f\left(-1\right)=2+4+-1+1+1\)
\(f\left(-1\right)=7\)
c) Vì \(2x^6+4x^4+x^3+x^2+1\ge0\) nên đa thức \(f\left(x\right)\) không có nghiệm
Bài 1:
a) Tìm x, biết: 3.(x - 1) - (x + 1) = - 1
b) Tìm nghiệm của đa thức: f(x) = 2x2 - x
Bài 2:
Cho đa thức f(x) = 2x2 - 3x + x + 1 ; g(x) = 3x - 3x3 + 2x2 - 2 ;
h(x) = 2x2 + 1
a) Tính g(x) - f(x) + h(x)
b)Tính f(- 1) - h(1/2)
c) Với giá trị nào của x thì f(x) = h(x)
Bài 3:
Cho tam giác ABC vuông tại A, đường cao AH. Gọi AD là tia phân giác của góc HAC, M là trung điểm của AD. Trên nửa mặt phẳng bờ AC chứa điểm B vẽ tia Ax song song với BC. Trên Ax lấy điểm E sao cho AE = DC
a) Chứng minh tam giác ADC = tam giác DAE
b) Chứng minh tam giác ABD là tam giác cân
c) Gọi I là giao điểm của DE và AH ; K là giao điểm của DE và AB. Chứng minh 3 điểm B, I, M thẳng hàng ?
ĐANG CẦN GẤP ! MONG MỌI NGƯỜI GIÚP ĐỠ ! CẢM ƠN RẤT NHIỀU !
Cho hai đa thức
f ( x ) = - 2 x 2 - 3 x 3 - 5 x + 5 x 3 - x + x 2 + 4 x + 3 + 4 x 2 , g ( x ) = 2 x 2 - x 3 + 3 x + 3 x 3 + x 2 - x - 9 x + 2
c. Tìm nghiệm của h(x)
c. Ta có h(x) = 0 ⇒ 5x + 1 = 0 ⇒ x = -1/5
Vậy nghiệm của đa thức h(x) là x = -1/5 (1 điểm)
Bài 1. Cho hai đa thức f(x)= 4x4-5x3+3x+2 và g(x)= -4x4+5x3+7. Trong các số -4; -3; 0 và 1, số nào là nghiệm của đa thức f(x) và g(x).
Bài 2. Cho hai đa thức f(x)=-x5+3x2+4x+8 và g(x)= -x5-3x2+4x+2. CMR đa thức f(x)-g(x) không có nghiệm
Bài 1
Gợi ý bạn làm : Bạn thay \(x=-4;x=-3;x=0;x=1\) vào \(f\left(x\right);g\left(x\right)\)
\(\Rightarrow\) Nếu kết quả ra giống nhau thì là nghiệm , ra khác nhau thì không là nghiệm
VD : Thay \(x=-4\) vào \(f\left(x\right)\) và \(g\left(x\right)\)
\(f\left(-4\right)=4.\left(-4\right)^4-5\left(-4\right)^3+3.\left(-4\right)+2=1334\)
\(g\left(x\right)=-4.\left(-4\right)^4+5\left(-4\right)^3+7=-1337\)
Ra hai kết quả khác nhau
\(\Rightarrow x=-4\) không là nghiệm
Bài 2
\(f\left(x\right)-g\left(x\right)=\left(-x^5+3x^2+4x+8\right)-\left(-x^5-3x^2+4x+2\right)\\ =-x^5+3x^2+4x+8+x^5+3x^2-4x-2\\ =\left(-x^5+x^5\right)+\left(3x^2+3x^2\right)+\left(4x-4x\right)+\left(8-2\right)\\ =6x^2+6\\ =x^2+1\\ =x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow\) phương trình vô nghiệm
Bài 1: Rút gọn biểu thức sau:
a. 3x2(2x3- x+5) - 6x5-3x3+10x2
b. -2x(x3-3x2-xx+11)-2x4+3x3+2x2-22x2x
Bài 2: Chứng minh biểu thức sau không phụ thuộc vào x:
a. x(2x+1)-x2(x+2)+(x2-x+3)
b. 4(x-6)-x2(2+3x)+x(5x-4)+3x2(x-1)
Bài 3: Cho đa thức: f(x)=3x2-x+1
g(x)=x-1
a. Tính f(x).g(x)
b. Tìm x để f(x).g(x)+x2[1-3g(x)]=
Bài 4: Tìm x:
a. \(\dfrac{1}{4}\)x2-(\(\dfrac{1}{2}\)x-4)\(\dfrac{1}{2}\)x=-14
b. 2x(x-4)+3(x-4)+x(x-2)-5(x-2)=3x
(x-4)-5(x-4)
Các bạn giúp mik giải bt nha. Cảm ơn mn nhiêu ạ.
`@` `\text {Ans}`
`\downarrow`
Gửi c!
Bài 1:
a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)
\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)
\(=10x^2+10x^2\)
\(=20x^2\)
b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)
\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)
\(=-4x^4+9x^3+4x^2-44x\)
4:
a: =>1/4x^2-1/4x^2+2x=-14
=>2x=-14
=>x=-7
b: =>2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x-5x+20
=>3x^2-12x-2=3x^2-17x+20
=>5x=22
=>x=22/5
Cho đa thức f(x) có các hệ số nguyên. Biết f(1).f(2)=2013. Chứng minh rằng đa thức f(x) không có nghiệm nguyên
Giả sử f(x) có nghiệm nguyên là a, Khi đó f(x)=(x−a)Q(x)
Thay x =1;2 vào biểu thức trên ta được : f(1)=(1−a)Q(1) và f(2)=(2−a)Q(2)
=> f(1).f(2)=(a−1)(a−2)Q(1).Q(2)
Hay 2013=(a−1)(a−2).Q(1)Q(2)
Ta có VT không chia hết cho 2, VP chia hết cho 2 ( vì (a−1)(a−2) chia hết cho 2 )
=> PT vô nghiệm
=> f(x) không có nghiệm nguyên
M(x) = 3x3 + x2 + 4x4 – x – 3x3 + 5x4 + 2x2 – 6
N(x) = - 2x2 – x4 + 4x3 – x2 -5x3 + 3x + 5 + x
a) Thu gọn và sắp xếp đa thức M(x), N(x) theo lũy thừa giảm của biến
b) Xác định hệ số cao nhất, hệ số tự do, bậc của các đa thức M(x), N(x).
c) Tính : M(x) + N(x)
d) Tính N(x) – M(x)
M(x) = 3x3 + x2 + 4x4 – x – 3x3 + 5x4 + 2x2 – 6
N(x) = - 2x2 – x4 + 4x3 – x2 -5x3 + 3x + 5 + x
a) Thu gọn và sắp xếp đa thức M(x), N(x) theo lũy thừa giảm của biến
b) Xác định hệ số cao nhất, hệ số tự do, bậc của các đa thức M(x), N(x).
c) Tính : M(x) + N(x)
d) Tính N(x) – M(x)
a) Ta có: \(M\left(x\right)=3x^3+x^2+4x^4-x-3x^3+5x^4+2x^2-6\)
\(=\left(4x^4+5x^4\right)+\left(3x^3-3x^3\right)+\left(x^2+2x^2\right)-x-6\)
\(=9x^4+3x^2-x-6\)
Ta có: \(N\left(x\right)=-2x^2-x^4+4x^3-x^2-5x^3+3x+5+x\)
\(=-x^4+\left(4x^3-5x^3\right)+\left(-2x^2-x^2\right)+\left(3x+x\right)+5\)
\(=-x^4-x^3-3x^2+4x+5\)
c) Ta có: M(x)+N(x)
\(=9x^4+3x^2-x-6-x^4-x^3-3x^2+4x+5\)
\(=8x^4-x^3+3x-1\)