cho parabol (p) y=mx2 và (d) y=(m+2)x+m-1, cmr với mọi m (d) luôn cắt (p) tại 2 điểm phân biệt
cho parabol (P) y=\(\dfrac{x^2}{2}\) và đường thẳng (d) y=mx-m+2
a, tìm m để (d) cắt (P) tại điểm có hoành độ =4
b, cmr với mọi m (d) luôn cắt (P) tại 2 điểm phân biệt
a) Thay x=4 vào (P), ta được:
\(y=\dfrac{4^2}{2}=\dfrac{16}{2}=8\)
Thay x=4 và y=8 vào (d), ta được:
\(m\cdot4-m+2=8\)
\(\Leftrightarrow3m=6\)
hay m=2
Vậy: m=2
b) Phương trình hoành độ giao điểm của (P) và (d) là:
\(\dfrac{x^2}{2}=mx-m+2\)
\(\Leftrightarrow\dfrac{1}{2}x^2-mx+m-2=0\)
\(\Delta=\left(-m\right)^2-4\cdot\dfrac{1}{2}\cdot\left(m-2\right)\)
\(=m^2-2\left(m-2\right)\)
\(=m^2-2m+4\)
\(=m^2-2m+1+3\)
\(=\left(m-1\right)^2+3>0\forall m\)
Do đó: (P) và (d) luôn cắt nhau tại hai điểm phân biệt(Đpcm)
Trong mptđ Oxy, cho: parabol (P): \(y=x^2\) và đường thẳng (d): \(y=\left(m-1\right)x+m^2-2m+3\)
.Cm (d) luôn cắt (P) tại 2 điểm phân biệt với mọi giá trị của m
PTHĐGĐ là:
x^2-(m-1)x-m^2+2m-3=0
a*c=-m^2+2m-3=-(m^2-2m+3)
=-(m^2-2m+1+2)
=-(m-1)^2-2<0
=>(P) luôn cắt (d) tại hai điểm phân biệt
Trong mặt phẳng tọa độ Oxy, cho Parabol (P): y=x2 và đường thẳng (d): y=mx+5.
CMR:Với mọi giá trị của tham số m, đường thẳng (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ x1,x2.Tìm m để x12-9-mx2
Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=mx+5\)
\(x^2-mx-5=0\)
\(\Delta=m^2+20\)
Vì \(\Delta>0\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt
Vậy đường thẳng (d) và (P) luôn cắt nhau tại 2 điểm phân biệt
Câu tìm m bạn ghi rõ đề ra nhá
Cho parabol (P) : 2 y x và đường thẳng (d) : y = mx + m - 2 a. Chứng minh rằng với mọi giá trị của m đường thẳng (d) luôn cắt parabol (P) tại 2 điểm phân biệt A, B. b. Gọi x 1 , x 2 là hoành độ của điểm A, B. Xác định m để 1 23 x x
Cho Parabol (P): y=\(-\dfrac{1}{2}\)x2 và đường thẳng (d) y=mx+m-1. Chứng minh (P) luôn cắt (d) tại hai điểm phân biệt với mọi m
Hoành độ giao điểm (P) ; (d) tm pt
\(\frac{1}{2}x^2+mx+m-1=0\Leftrightarrow x^2+2mx+2m-2=0\)
\(\Delta'=m^2-\left(2m-2\right)=m^2+2m+2=\left(m+1\right)^2+1>0\)
Vậy (P) cắt (d) tại 2 điểm pb
Cho đường thẳng (d) : y = mx +1 và parabol : y = x2
a,Chứng minh rằng với mọi m thì (d) luôn đi qua 1 điểm cố định ?
b,Chứng minh rằng (P) luôn cắt (d) tại 2 điểm phân biệt với mọi m ?
a: Khi m=2 thì \(y=-3x+2^2=-3x+4\)
Phương trình hoành độ giao điểm là:
\(x^2=-3x+4\)
=>\(x^2+3x-4=0\)
=>(x+4)(x-1)=0
=>\(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)
Thay x=-4 vào (P), ta được:
\(y=\left(-4\right)^2=16\)
Thay x=1 vào (P), ta được:
\(y=1^2=1\)
Vậy: (d) cắt (P) tại A(-4;16) và B(1;1)
b: Phương trình hoành độ giao điểm là:
\(x^2=-3x+m^2\)
=>\(x^2+3x-m^2=0\)
\(\text{Δ}=3^2-4\cdot1\cdot\left(-m^2\right)=4m^2+9>=9>0\forall m\)
=>(d) luôn cắt (P) tại hai điểm phân biệt
Cho parabol (P) : y =mx2 (m khác 0) và đường thẳng (d) : y= 2(m-2)x + m-3 Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1 ; x2 trái dấu .
PTHĐGĐ là:
mx^2-2(m-2)x-m+3=0
Để (d) cắt (P) tại hai điểm phân biệt trái dấu thì m(-m+3)<0
=>m(m-3)>0
=>m>3 hoặc m<0
cho parabol (P)và đường thẳng (d) có phương trình lần lượt là \(y=mx^2\) và \(y=\left(m+2\right)x+m-1\) ( m là tham số,\(m\ne0\)
a) với m = -1 tìm tọa độ giao điểm của (d) và (P)
b) CMR với mọi \(m\ne0\) đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt
a, Với m = -1 thì \(\hept{\begin{cases}\left(P\right)y=-x^2\\\left(d\right)y=x-2\end{cases}}\)
Tọa độ giao điểm của (d) và (P) là nghiệm của hệ phương trình :
\(\hept{\begin{cases}y=-x^2\\y=x-2\end{cases}\Leftrightarrow}\hept{\begin{cases}-x^2=x-2\\y=x-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+x-2=0\\y=x-2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}\left(h\right)\hept{\begin{cases}x=-2\\y=-4\end{cases}}}\)
Vậy tọa độ giao điểm (d) và (P) với m = -1 là (1;-1) ; (-2;-4)
b, Phương trình hoành độ giao điểm của (d) và (P) là
\(mx^2=\left(m+2\right)x+m-1\)
\(\Leftrightarrow mx^2-\left(m+2\right)x-m+1=0\)
Vì m khác 0 nên pt trên là pt bậc 2
Khi đó \(\Delta=\left[-\left(m+2\right)\right]^2-4m\left(-m+1\right)\)
\(=m^2+4m+4+4m^2-4m\)
\(=5m^2+4>0\)
Nên pt trên luôn có 2 nghiệm p/b
hay (d) luôn cắt (P) tại 2 điểm phân biệt với m khác 0