Những câu hỏi liên quan
NN
Xem chi tiết
NT
31 tháng 12 2023 lúc 19:12

a: Xét tứ giác ABCO có

\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

nên ABCO là tứ giác nội tiếp đường tròn đường kính OA

=>A,B,C,O cùng thuộc đường tròn đường kính OA

tâm là trung điểm của OA

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại M và M là trung điểm của BC

Xét ΔOCA vuông tại C có CM là đường cao

nên \(OM\cdot OA=OC^2\)

mà OC=OE(=R)

nên \(OE^2=OM\cdot OA\)

c: Ta có: ΔOEF cân tại O

mà OG là đường trung tuyến

nên OG\(\perp\)EF

Xét ΔOGA vuông tại G và ΔOMH vuông tại M có

\(\widehat{GOA}\) chung

Do đó: ΔOGA đồng dạng với ΔOMH

=>\(\dfrac{OG}{OM}=\dfrac{OA}{OH}\)

=>\(OG\cdot OH=OA\cdot OM=OE^2\)

=>\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)

Xét ΔOGE và ΔOEH có

\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)

\(\widehat{GOE}\) chung

Do đó: ΔOGE đồng dạng với ΔOEH

=>\(\widehat{OGE}=\widehat{OEH}\)

=>\(\widehat{OEH}=90^0\)

=>HE là tiếp tuyến của (O)

Bình luận (0)
NT
Xem chi tiết
NT
7 tháng 1 2024 lúc 14:13

a: Ta có: ΔOBC cân tại O

mà OK là đường trung tuyến

nên OK\(\perp\)BC và OK là phân giác của góc BOC

OK là phân giác của góc BOC

=>\(\widehat{BOK}=\widehat{COK}\)

=>\(\widehat{BOD}=\widehat{COD}\)

Xét ΔOBD và ΔOCD có

OB=OC

\(\widehat{BOD}=\widehat{COD}\)

OD chung

Do đó: ΔOBD=ΔOCD

=>DB=DC

ΔOBD=ΔOCD

=>\(\widehat{OBD}=\widehat{OCD}\)

mà \(\widehat{OBD}=90^0\)

nên \(\widehat{OCD}=90^0\)

=>DC\(\perp\)CO tại C

=>DC là tiếp tuyến của (O)

b: Xét tứ giác CHOK có

\(\widehat{CHO}+\widehat{CKO}=90^0+90^0=180^0\)

nên CHOK là tứ giác nội tiếp đường tròn đường kính CO

=>C,H,O,K cùng thuộc một đường tròn

tâm là trung điểm của CO

Bán kính là \(\dfrac{CO}{2}\)

Bình luận (0)
ND
Xem chi tiết
TT
Xem chi tiết
SS
Xem chi tiết
YD
30 tháng 5 2022 lúc 0:33

undefinedundefined

Bình luận (0)
LH
Xem chi tiết
NT
7 tháng 12 2022 lúc 23:45

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

Bình luận (0)
VL
Xem chi tiết
NT
16 tháng 3 2023 lúc 14:24

1: góc OAS+góc OBS=90+90=180 độ

=>OASB nội tiép

2: Xét ΔSAC và ΔSDA có

góc SAC=góc SDA

góc ASC chung

=>ΔSAC đồng dạng với ΔSDA

=>SA/SD=SC/SA

=>SA^2=SD*SC=SA*SB

3: Xét (O) có

SA,SB là tiêp tuyến

=>SA=SB

mà OA=OB

nên OS là trung trực của AB

=>OS vuông góc AB tại I

=>SI*SO=SA^2=SC*SD

=>SI/SD=SC/SO

=>ΔSIC đồng dạng với ΔSDO

Bình luận (0)
VL
Xem chi tiết
NT
14 tháng 3 2023 lúc 18:24

loading...  

Bình luận (0)
0H
Xem chi tiết
NT
8 tháng 3 2022 lúc 22:46

a Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó:BCEF là tứ giác nội tiếp

b: Xét ΔABE vuông tại E và ΔACF vuông tại F có

\(\widehat{BAE}\) chung

DO đó: ΔABE\(\sim\)ΔACF

Suy ra: AB/AC=AE/AF

hay \(AB\cdot AF=AE\cdot AC\)

Bình luận (0)