VL

Bài IV (3,0 điểm) Cho đường tròn (O,R) và một điểm S nằm ngoài đường tròn. Từ điểm S vẽ hai tiếp tuyến SA, SB với (O) (A, B là các tiếp điểm). 1) Chứng minh tứ giác OASB là tứ giác nội tiếp. 2) Kẻ đường kính BD của đường tròn (O). Đường thẳng SD cắt đường tròn (O) tại điểm C (C khác D ). Chứng minh rằng SA.SB = SC.SD. 3) Gọi I là giao điểm của hai đoạn thẳng SO và AB . Tia CI cắt đường tròn (O) tại điểm thứ hai là M . Chứng minh tam giác SCI đồng dạng với tam giác SOD và ba điểm A, O, M là ba điểm thẳng hàng.

NT
16 tháng 3 2023 lúc 14:24

1: góc OAS+góc OBS=90+90=180 độ

=>OASB nội tiép

2: Xét ΔSAC và ΔSDA có

góc SAC=góc SDA

góc ASC chung

=>ΔSAC đồng dạng với ΔSDA

=>SA/SD=SC/SA

=>SA^2=SD*SC=SA*SB

3: Xét (O) có

SA,SB là tiêp tuyến

=>SA=SB

mà OA=OB

nên OS là trung trực của AB

=>OS vuông góc AB tại I

=>SI*SO=SA^2=SC*SD

=>SI/SD=SC/SO

=>ΔSIC đồng dạng với ΔSDO

Bình luận (0)

Các câu hỏi tương tự
VL
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
AT
Xem chi tiết
TK
Xem chi tiết
TK
Xem chi tiết
NM
Xem chi tiết
PB
Xem chi tiết