Những câu hỏi liên quan
LN
Xem chi tiết
LN
Xem chi tiết
PA
Xem chi tiết
HG
25 tháng 8 2015 lúc 18:02

\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-\frac{1}{97.96}+......+\frac{1}{2.1}\)

\(\frac{1}{99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}\right)\)

\(\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{98}-\frac{1}{99}\right)\)

\(\frac{1}{99}-\left(1-\frac{1}{99}\right)\)

\(\frac{1}{99}-\frac{98}{99}\)

\(\frac{-97}{99}\)

Bình luận (0)
TL
Xem chi tiết
PN
26 tháng 7 2017 lúc 21:48

\(=\frac{1}{99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\) 

\(=\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\) 

\(=\frac{1}{99}-\frac{98}{99}=-\frac{97}{99}\)

Bình luận (0)
LN
Xem chi tiết
HH
14 tháng 6 2018 lúc 21:40

Giải:

\(\dfrac{1}{99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-\dfrac{1}{97.96}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(=-\left(-\dfrac{1}{99}+\dfrac{1}{99.98}+\dfrac{1}{98.97}+\dfrac{1}{97.96}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)

\(=-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}-\dfrac{1}{99}\right)\)

\(=-\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}-\dfrac{1}{99}\right)\)

\(=-\left(\dfrac{1}{1}-\dfrac{1}{99}-\dfrac{1}{99}\right)\)

\(=-\dfrac{97}{99}\)

Vậy ...

Bình luận (1)
TL
Xem chi tiết
NT
15 tháng 6 2023 lúc 17:49

=-1/99-(1-1/2+1/2-1/3+...+1/98-1/99)

=-2/99+1=97/99

Bình luận (0)
HT
Xem chi tiết
H24
26 tháng 7 2017 lúc 22:08

Giải:

\(\dfrac{1}{99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-\dfrac{1}{97.96}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(=\dfrac{1}{99}-\left(\dfrac{1}{99.98}+\dfrac{1}{98.97}+\dfrac{1}{97.96}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)

\(=\dfrac{1}{99}-\left(\dfrac{1}{99}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{96}+...+\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{2}-1\right)\)

\(=\dfrac{1}{99}-\left(\dfrac{1}{99}-1\right)\)

\(=\dfrac{1}{99}-\dfrac{-98}{99}\)

\(=\dfrac{1}{99}+\dfrac{98}{99}\)

\(=\dfrac{99}{99}=1\)

Chúc bạn học tốt!

Bình luận (0)
TH
26 tháng 7 2017 lúc 22:15

\(\dfrac{1}{99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-\dfrac{1}{97.96}-...-\dfrac{1}{3.2}+\dfrac{1}{2.1}\)

=\(\dfrac{1}{99}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{98}-\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{97}+\dfrac{1}{96}-\dfrac{1}{96}+...+\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{2}+1\)

=\(0+1\)

=\(1\)

Bạn học tốt^^

Bình luận (0)
PN
Xem chi tiết
NM
23 tháng 8 2017 lúc 20:14

\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\right)\)

\(=\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)

\(=\frac{1}{99}-\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{99}-\frac{98}{99}\)

\(=-\frac{97}{99}\)

Ủng hộ ! 

Bình luận (0)
Xem chi tiết
H24
20 tháng 6 2018 lúc 16:21

\(P=\frac{1}{99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{98.99}\right)\)

\(=\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)

\(=\frac{1}{99}-\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{99}-\frac{98}{99}\)

\(=-\frac{97}{99}\)

Vậy \(P=-\frac{97}{99}\)

Bình luận (0)
VN
20 tháng 6 2018 lúc 16:37

P=-1/1.2-1/2.3-...-1/98.99-1/99

P=-(1/1.2+1/2.3+...+1/98.99+1/99)

P=-1

Bình luận (0)