Bài 2: Cộng, trừ số hữu tỉ

LN

1/99 - 1/99.98 - 1/98.97 - 1/97.96 -...-1/3.2 -1/2.1

HH
14 tháng 6 2018 lúc 21:40

Giải:

\(\dfrac{1}{99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-\dfrac{1}{97.96}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(=-\left(-\dfrac{1}{99}+\dfrac{1}{99.98}+\dfrac{1}{98.97}+\dfrac{1}{97.96}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)

\(=-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}-\dfrac{1}{99}\right)\)

\(=-\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}-\dfrac{1}{99}\right)\)

\(=-\left(\dfrac{1}{1}-\dfrac{1}{99}-\dfrac{1}{99}\right)\)

\(=-\dfrac{97}{99}\)

Vậy ...

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
CM
Xem chi tiết
SK
Xem chi tiết
NT
Xem chi tiết
VT
Xem chi tiết
VH
Xem chi tiết
DN
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết