Những câu hỏi liên quan
TH
Xem chi tiết
TT
Xem chi tiết
H24
16 tháng 8 2020 lúc 17:01

a) Ta có : \(Q\left(2\right)=4a+2b+c\)

\(Q\left(-1\right)=a-b+c\)

\(\Rightarrow Q\left(2\right)+Q\left(-1\right)=5a+b+2c=0\)

\(\Rightarrow Q\left(2\right)=-Q\left(-1\right)\)

\(\Rightarrow Q\left(2\right).Q\left(-1\right)\le0\)

b) Vì \(Q\left(x\right)=0\) với mọi $x$

$\to Q(0) = c=0$

$Q(1) = a+b+c=a+b=0$ $(1)$

$Q(-1) = a-b +c = a-b=0$ $(2)$

Từ $(1)$ và $(2)$ $\to a=b=c=0$

Bình luận (0)
NG
Xem chi tiết
VT
23 tháng 7 2017 lúc 21:43

x-x2-2

=-(x2-x+2)

=-(x-1/2)2-7/4

Vì -(x-1/2)< hoặc = 0 Với mọi x

=> -(x-1/2)2-7/4 < hoặc bằng -7/4

Kết luận

Bình luận (0)
LL
Xem chi tiết
KH
10 tháng 4 2020 lúc 9:32

\(a.pt:x^2+2\left(1-m\right)x-m=0\)

\(\Delta=\left(2-2m\right)^2-4.1.\left(-m\right)=4-8m+4m^2+4m=4m^2-4m+4=\left(2m-1\right)^2+3>0\forall m\)

⇒ pt luôn có 2 nghiệm phân biệt

\(b.pt:x^2+mx-m^2-1=0\)

Ta có: \(m^2+1>0\forall m\Rightarrow-\left(m^2+1\right)< 0\forall m\)

\(a.c< 0\) ⇒ pt luôn có 2 nghiệm phân biệt

Bình luận (0)
TT
Xem chi tiết
EC
15 tháng 8 2016 lúc 18:33

a)x2-6x+10

      Ta có:x2-6x+10=x2-2.3x+9+1

                               =(x-3)2+1

            Vì (x-3)2\(\ge\)0

 Suy ra:(x-3)2+1\(\ge\)1(đpcm)

b)4x-x2-5

      Ta có:4x-x2-5=-(x2-4x+5)

                           =-(x2-2.2x+4)-1

                           =-1-(x-2)2

              Vì -(x-2)2\(\le\)0

Suy ra:-1-(x-2)2\(\le\)-1(đpcm)

 

Bình luận (0)
HN
15 tháng 8 2016 lúc 18:31

a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1>0\) với mọi x

b) \(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\) với mọi x

Bình luận (0)
LF
15 tháng 8 2016 lúc 18:38

a)x2-6x+10

=x2-6x+9+1

=(x-3)2+1

Ta thấy:\(\left(x-3\right)\ge0\) với mọi x

\(\Rightarrow\left(x-3\right)^2+1>0\) với mọi x

b)4x-x2-5

=-(x2-4x+5)

=-(x-4x+4+1)

=-(x-2)2-1

Ta thấy:\(-\left(x-2\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-2\right)^2-1< 0\) với mọi x

Bình luận (0)
NA
Xem chi tiết
H24
1 tháng 4 2022 lúc 8:53

a) Ta có: \(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(2m-3\right)=16-4\left(2m-3\right)\)

\(\Leftrightarrow\Delta=16-8m+12=-8m+28\)

Để phương trình có hai nghiệm x1;x2 phân biệt thì \(-8m+28>0\)

\(\Leftrightarrow-8m>-28\)

hay \(m< \dfrac{7}{2}\)

Với \(m< \dfrac{7}{2}\) thì phương trình có hai nghiệm phân biệt x1;x2

nên Áp dụng hệ thức Viet, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)

Để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau thì 

\(\left\{{}\begin{matrix}m< \dfrac{7}{2}\\4+2m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)

Vậy: Khi \(m=-\dfrac{1}{2}\) thì phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau

Bình luận (0)
 Khách vãng lai đã xóa
HH
Xem chi tiết
NT
24 tháng 7 2021 lúc 13:35

\(x^2-2x+2=x^2-2x+1+1=\left(x-1\right)^2+1\ge1>0\forall x\)

Bình luận (0)
NT
25 tháng 7 2021 lúc 0:07

Ta có: \(x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)

Bình luận (0)
NH
Xem chi tiết
HN
15 tháng 7 2016 lúc 18:34

\(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\)

Bình luận (0)
NH
Xem chi tiết
KN
28 tháng 6 2019 lúc 6:35

a) \(x^2-6x+10=x^2-2.3x+3^2+1=\left(x-3\right)^2+1\)

Mà \(\left(x-3\right)^2\ge0\) nên \(\left(x-3\right)^2+1>0\)

hay \(x^2-6x+10>0\left(đpcm\right)\)

b) \(4x-x^2-5=-\left(x^2-4x\right)-5=-\left(x^2-4x+4\right)+4-5\)

\(=-\left(x-2\right)^2-1\)

Vì \(-\left(x-2\right)^2\le0\forall x\)nên \(-\left(x-2\right)^2-1< 0\)

hay \(4x-x^2-5< 0\left(đpcm\right)\)

Bình luận (0)
NA
28 tháng 6 2019 lúc 10:42

a) Ta có:

\(x^2-6x+10=x^2-6x+9+1\) 1

\(=\left(x-3\right)^2+1\) 

vì \(\left(x-3\right)^2\ge0\forall x\in R\) ;1>0

\(\Rightarrow\left(x-3\right)^2+1\ge1\forall x\in R\) 

=>đpcm

b)

\(4x-x^2-5=-\left(x^2-4x+4\right)-1\) 

\(=-\left(x-2\right)^2-1\) 

vì:\(-\left(x-2\right)^2\le0\forall x\in R\) ;-1<0

=>..........

vậy...

hc tốt

Bình luận (0)