CMR\(a^4+b^4\ge\frac{1}{8}\)biết a+b=1 và a,b>0
câu 1 :Cmr a)\(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\)
b) \(\frac{a^3+b^3+c^3}{3}\ge\left(\frac{a+b+c}{3}\right)^3\)
câu 2 : cho a+b=1 .Cm \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)
câu 3: cho a+b+c=1và a,b,c>0.CMR \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
câu 4 Tim max của : ab+2(a+b) ...biết a2+b2=1
Câu 2)
Ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)
\(\Rightarrow\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)
Ta có \(a+b=1\)
\(\Rightarrow\frac{3}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)
\(\Rightarrow\frac{3}{\left(a+1\right)b+a+1}\ge\frac{4}{3}\)
\(\Rightarrow\frac{3}{ab+b+a+1}\ge\frac{4}{3}\)
Ta có \(a+b=1\)
\(\Rightarrow\frac{3}{ab+2}\ge\frac{4}{3}\)
\(\Leftrightarrow9\ge4\left(ab+2\right)\)
\(\Rightarrow9\ge4ab+8\)
\(\Rightarrow1\ge4ab\)
Do \(a+b=1\Rightarrow\left(a+b\right)^2=1\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
\(\Rightarrow a^2+2ab+b^2\ge4ab\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\) (đpcm )
Câu 3)
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Mà \(a+b+c=1\)
\(\Rightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\ge9\)
\(\Rightarrow a+b+c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Áp dụng bất đẳng thức Cô-si
\(\Rightarrow\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{matrix}\right.\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{abc}\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\sqrt[3]{\frac{abc}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (điều này luôn luôn đúng)
\(\Rightarrow\) ĐPCM
Cho a,b,c\(\ge\)0 và a+b+c=1.CMR:\(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\le\frac{3}{4}.\)
\(\frac{a}{1+a}-1+\frac{b}{1+b}-1+\frac{c}{1+c}-1\)
\(=-\left(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\right)\)
\(\le-\frac{9}{3+a+b+c}=-\frac{9}{4}\)
\(\Rightarrow\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\le-\frac{9}{4}+3=\frac{3}{4}\)
Với a,b,c>0.Cmr
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)
\(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(VT\ge\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}=\left(\frac{1}{a+b}+\frac{1}{b+c}\right)+\left(\frac{1}{b+c}+\frac{1}{c+a}\right)+\left(\frac{1}{a+b}+\frac{1}{c+a}\right)\)
\(VT\ge\frac{4}{a+2b+c}+\frac{4}{a+b+2c}+\frac{4}{2a+b+c}\)
Dấu "=" xảy ra khi \(a=b=c\)
1.Cho a>0,b>0
CMR: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\frac{b}{ab}+\frac{a}{ab}\ge\frac{4}{a+b}\)
\(\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)\left(a+b\right)\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\left(đpcm\right)\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) \(\left(ĐK:a>0;b>0\right)\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)\left(a+b\right)\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (BĐT luôn đúng)
Vậy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Áp dụng BĐT Cauchy-schwarz ta có:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{2^2}{a+b}=\frac{4}{a+b}\)
đpcm
Tham khảo nhé~
Cho a,b,c >0 thỏa a + b + c =1.
CMR: \(a^4+b^4+c^4\ge\frac{1}{27}\)
Áp dụng BĐT AM-GM ta có:
\(Gt\Rightarrow a+b+c=1\Rightarrow3\sqrt[3]{abc}\ge1\)
\(\Rightarrow\sqrt[3]{abc}\ge\frac{1}{3}\Rightarrow abc\ge\frac{1}{27}\)
Tiếp tục áp dụng BĐT AM-GM ta có:
\(\left\{\begin{matrix}a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\\b^4+c^4\ge2b^2c^2\\c^4+a^4\ge2c^2a^2\end{matrix}\right.\)
Cộng theo vế rồi thu gọn ta có:
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\left(1\right)\)
Sử dụng AM-GM lần nữa:
\(\left\{\begin{matrix}a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2\sqrt{a^2c^2}=2ab^2c\\b^2c^2+c^2a^2\ge2abc^2\\c^2a^2+a^2b^2\ge2a^2bc\end{matrix}\right.\)
Cộng theo vế rồi rút gọn ta có:
\(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\ge\frac{1}{27}\)\(\left(\left\{\begin{matrix}a+b+c=1\\abc\ge\frac{1}{27}\end{matrix}\right.\right)\left(2\right)\)
Từ (1) và (2) ta có được ĐPCM
Áp dụng bđt a2 + b2 + c2 \(\ge\) ab + bc + ca ta co:
3(a2 + b2 + c2) \(\ge\) a2 + b2 + c2 + 2(ab + bc + ca) = (a + b + c)2 = 1
<=> \(a^2+b^2+c^2\ge\frac{1}{3}\)
Áp dụng bđt Cauchy-Schwarz dạng Engel ta có:
\(a^4+b^4+c^4\ge\frac{\left(a^2+b^2+c^2\right)^2}{1+1+1}\ge\frac{\left(\frac{1}{3}\right)^2}{3}=\frac{1}{27}\)
Dấu "=" xảy ra khi a = b = c
lần sau bn gửi thêm thông tin vòng mấy hộ mik nhé, mik muốn biết câu hỏi ở vòng nào
câu 1 :Cmr a)\(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\)
b) \(\frac{a^3+b^3+c^3}{3}\ge\left(\frac{a+b+c}{3}\right)^3\)
câu 2 : cho a+b=1 .Cm \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)
câu 3: cho a+b+c=1và a,b,c>0.CMR \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
câu 4 Tim max của : ab+2(a+b) ...biết a2+b2=1
Câu 1: a)
b) Áp dụng Bđt Holder ta có:
\(\Rightarrow9\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)
\(\Rightarrow\frac{a^3+b^3+c^3}{3}\ge\frac{\left(a+b+c\right)^3}{27}=\left(\frac{a+b+c}{3}\right)^3\)(đpcm)
Dấu = khi a=b=c
Câu 2:
Áp dụng Bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)ta có:
\(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+1+1}=\frac{4}{3}\)(Đpcm)
Dấu = khi \(a=b=\frac{1}{2}\)
Câu 3:
Áp dụng Bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\left(a+b+c=1\right)\)(Đpcm)
Dấu = khi \(a=b=c=\frac{1}{3}\)
Câu 4: nghĩ sau
câu 1 :Cmr a)\(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\)
b) \(\frac{a^3+b^3+c^3}{3}\ge\left(\frac{a+b+c}{3}\right)^3\)
câu 2 : cho a+b=1 .Cm \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)
câu 3: cho a+b+c=1và a,b,c>0.CMR \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
câu 4 Tim max của : ab+2(a+b) ...biết a2+b2=1
giúp mik
CMR
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a,b>0
BĐT svac
\(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\forall a,b>0\)
Cho a+b=1 và a,b>0 cmr :a) 8(a4+b4)+\(\frac{1}{ab}\)\(\ge\)5
b) (a+ \(\frac{1}{a}\))2+(b+\(\frac{1}{b}\) )2\(\ge\)2
\(8\left(a^4+b^4\right)+\frac{1}{ab}=8\left(a^4+b^4+0,5^4+0,5^4\right)+\frac{1}{ab}-1\)
Áp dụng BĐT AM-GM ta có:
\(8\left(a^4+b^4\right)+\frac{1}{ab}\ge8.4.\sqrt[4]{a^4.b^4.0,5^4.0,5^4}+\frac{1}{ab}-1=8.ab+\frac{1}{2ab}+\frac{1}{2ab}\ge2.\sqrt{8ab.\frac{1}{2ab}}+\frac{1}{\frac{\left(a+b\right)^2}{2}}-1=4+2-1=5\)
Dấu " = " xảy ra <=> a=b=0,5
\(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2=a^2+2+\frac{1}{a^2}+b^2+2+\frac{1}{b^2}\)
Áp dụng BĐT Cauchy-schwarz và AM-GM ta có: ( link c/m Cauchy-schwarz: Xem câu hỏi )
\(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\ge\frac{\left(a+b\right)^2}{2}+2.\sqrt{\frac{1}{a^2}.4}+2.\sqrt{\frac{1}{b^2}.4}-4=\frac{1}{2}+2.\frac{2}{a}+2.\frac{2}{b}-4\ge\frac{1}{2}+\frac{\left(2+2\right)^2}{a+b}-4=12,5\)
Dấu " = " xảy ra <=> a=b=0,5
Theo mình đề bài là chứng minh \(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\ge12,5\)
Tham khảo nhé~