Áp dụng BĐT AM-GM ta có:
\(Gt\Rightarrow a+b+c=1\Rightarrow3\sqrt[3]{abc}\ge1\)
\(\Rightarrow\sqrt[3]{abc}\ge\frac{1}{3}\Rightarrow abc\ge\frac{1}{27}\)
Tiếp tục áp dụng BĐT AM-GM ta có:
\(\left\{\begin{matrix}a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\\b^4+c^4\ge2b^2c^2\\c^4+a^4\ge2c^2a^2\end{matrix}\right.\)
Cộng theo vế rồi thu gọn ta có:
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\left(1\right)\)
Sử dụng AM-GM lần nữa:
\(\left\{\begin{matrix}a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2\sqrt{a^2c^2}=2ab^2c\\b^2c^2+c^2a^2\ge2abc^2\\c^2a^2+a^2b^2\ge2a^2bc\end{matrix}\right.\)
Cộng theo vế rồi rút gọn ta có:
\(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\ge\frac{1}{27}\)\(\left(\left\{\begin{matrix}a+b+c=1\\abc\ge\frac{1}{27}\end{matrix}\right.\right)\left(2\right)\)
Từ (1) và (2) ta có được ĐPCM
Áp dụng bđt a2 + b2 + c2 \(\ge\) ab + bc + ca ta co:
3(a2 + b2 + c2) \(\ge\) a2 + b2 + c2 + 2(ab + bc + ca) = (a + b + c)2 = 1
<=> \(a^2+b^2+c^2\ge\frac{1}{3}\)
Áp dụng bđt Cauchy-Schwarz dạng Engel ta có:
\(a^4+b^4+c^4\ge\frac{\left(a^2+b^2+c^2\right)^2}{1+1+1}\ge\frac{\left(\frac{1}{3}\right)^2}{3}=\frac{1}{27}\)
Dấu "=" xảy ra khi a = b = c
lần sau bn gửi thêm thông tin vòng mấy hộ mik nhé, mik muốn biết câu hỏi ở vòng nào