Chứng tỏ các đa thức sau vô nghiệm
a,x2+2x+2
b,-x2+2x-3
chỨNG tỎ cÁC Đa thỨC sau ko phỤ thuỘC vÀO biẾN
a)(3x+7).(2x+3)-(3x-5).(2x+11)
b)(3x2-2x+1).(x2+2x+3)-4x.(x2-1)-3x2.(x2+2)
\(a,=6x^2+23x+21-\left(6x^2+23x-55\right)\\ =76\left(đpcm\right)\\ b,=3x^4+6x^3+9x^2-2x^3-4x^2-6x+x^2+2x+3-4x^3+4x-3x^4-6x^2\\ =3\left(đpcm\right)\)
Chứng tỏ các đa thức sau ko có nghiệm
a, x2 + 4x +10
b, x2 - 2x + 5
a, \(x^2\) + 4\(x\) + 10
= ( \(x^2\) + 4\(x\) + 4) + 6
= (\(x\) + 2)2 + 6
vì (\(x\) + 2)2 ≥ 0
⇒ (\(x\) + 2)2 + 6 ≥ 6 > 0 vậy đa thức đã cho vô nghiệm (đpcm)
b, \(x^2\) - 2\(x\) + 5
= (\(x^2\) - 2\(x\) + 1) + 4
= (\(x\) - 1)2 + 4
Vì (\(x\) - 1)2 ≥ 0 ⇒ (\(x\) -1)2 + 4≥ 4 > 0
Vậy đa thức đã cho vô nghiệm (đpcm)
Chứng tỏ rằng các phương trình sau vô nghiệm:
a.x2+2x+3/x2-x+1=0
b.x/x+2+4/x-2=4/x2-4
a. \(\dfrac{x^2+2x+3}{x^2-x+1}=0\) ⇔x2+2x+3=0 ⇔x2+2x+1+2=0 ⇔(x+1)2+2=0
Vì (x+1)2+2>0 nên phương trình đã cho vô nghiệm.
b) \(\dfrac{x}{x+2}+\dfrac{4}{x-2}=\dfrac{4}{x^2-4}\) ⇔\(\dfrac{x\left(x-2\right)+4\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4}{\left(x-2\right)\left(x+2\right)}\)
⇔\(x\left(x-2\right)+4\left(x+2\right)=4\) ⇔x2-2x+4x+8-4=0 ⇔x2+2x+4=0 ⇔x2+2x+1+3=0 ⇔(x+1)2+3=0
Vì (x+1)2+3>0 nên phương trình đã cho vô nghiệm.
Chứng tỏ các phương trình sau vô nghiệm:
a. |x|+1=0 b. x2 + 2x + 3=0
a) Ta có \(\left|x\right|\ge0\) nên |x| + 1 > 0 với mọi x. Do đó phương trình đã cho vô nghiệm.
b) Tương tự, phân tích \(x^2+2x+3=\left(x+1\right)^2+2>0\)
chứng tỏ đa thức sau k có nghiệm
f(x)=x2+2x+1-2x
\(f\left(x\right)=x^2+1\ge1\)
=> Đa thức không có nghiệm
Chứng minh các đa thwusc sau đây dương với x,y ϵ R
a) x2 + 2x + 2
b) x2 - x + 1
a) `x^2+2x+2=(x^2+2x+1)+1=(x+1)^2+1 >0 forall x`
b) `x^2-x+1=[x^2 -2.x. 1/2 + (1/2)^2 ]+ 3/4`
`=(x^2-1/2)^2 + 3/4 >0 forall x`.
chứng tỏ rằng các phương trình sau đây vô nghiệm :
a)2(x+1)=2x-1 b)x2+4x+5=0
c)4x2+2x+1=0 d)x2-x+1=0
a) 2(x+1)=2x-1
<=> 2x+2=2x-1
<=> 2x+2-2x+1=0
<=>1=0
=>Pt vô nghiệm
chứng minh rằng các đa thức sau không có nghiệm
a) \(\left(2x-3\right)^2+10\)
b) \(x^2+2x+4\)
c) \(3x^2-x+5\)
a. ta có
(2x − 3)2 ≥ 0
=> (2x − 3)2 + 10 > 0
=> đa thức trên ko có nghiệm
b. ta có:
x2 ≥ 0
4 > 0
=> x2 + 4 > 0
=> x2 + 2x + 4 > 0
=> đa thức trên ko có nghiệm
câu c mik vẫn chưa biết chứng minh vì bài này lần đầu tiên làm. Sorry bạn !!!
Bài 3: cho đa thức P(x)= 5x3 - x4 + 2x - x2 + x4 + 2x2 - 5x3 - 3
a, thu gọn tìm bậc của đa thức
b, Chứng tỏ X=-3 ; x=1 là các nghiệm của đa thức P(x)
c, Tìm nghiệm của đa thức Q(x) biết Q(x) + P(x) = x2 - x
Cần gấp
a. cậu thu gọn bằng cách dùng t/c kết hợp và giao hoán
b. cậu thay từng giá vào biểu thức vừa được rút gọn để tìm
c. thì.... tớ ko biết
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào x :
a) A=(x+6)2+2(x-5)2-(x+2)2-2(x-3)2
b) B=(x-2)(x2+2x+4)-(x+2)(x2-2x+4)
c) C=x4+2x2-(x2-2x+3)(x2+2x+3)
Lời giải:
a.
$A=(x+6)^2-(x+2)^2+2[(x-5)^2-(x-3)^2]$
$=(x+6-x-2)(x+6+x+2)+2[(x-5-x+3)(x-5+x-3)]$
$=4(2x+8)+2(-2)(2x-8)$
$=4(2x+8)-4(2x-8)=4[(2x+8)-(2x-8)]=4.16=64$ không phụ thuộc vào $x$
b.
$B=(x^3-2^3)-(x^3+2^3)=-16$ không phụ thuộc vào $x$
c.
$C=x^4+2x^2-[(x^2+3)^2-(2x)^2]$
$=x^4+2x^2-(x^4+6x^2-4x^2)$
$=x^4+2x^2-(x^4+2x^2)=0$ không phụ thuộc vào $x$
a) Ta có: \(A=\left(x+6\right)^2+2\left(x-5\right)^2-\left(x+2\right)^2-2\left(x-3\right)^2\)
\(=x^2+12x+36+2\left(x^2-10x+25\right)-\left(x^2+4x+4\right)-2\left(x^2-6x+9\right)\)
\(=x^2+12x+36+2x^2-20x+50-x^2-4x-4-2x^2+12x-18\)
\(=34\)
b) Ta có: \(B=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+2\right)\left(x^2-2x+4\right)\)
\(=x^3-8-x^3-8\)
=-16
c) Ta có: \(C=x^4+2x^2-\left(x^2-2x+3\right)\left(x^2+2x+3\right)\)
\(=x^4+2x^2-\left[\left(x^2+3\right)^2-4x^2\right]\)
\(=x^4+2x^2-\left(x^4+6x^2+9\right)+4x^2\)
\(=-9\)