Những câu hỏi liên quan
ND
Xem chi tiết
NT
11 tháng 5 2023 lúc 7:33

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AFE=góc ACB

=>ΔAFE đồng dạng với ΔACB

b: MF/MB=HF/HB

NE/NC=HE/HC

Xét ΔHFE và ΔHBC có

góc HFE=góc HBC

góc FHE=góc BHC

=>ΔHFE đồng dạng với ΔHBC

=>HF/HB=HE/HC

=>MF/MB=NE/NC

Bình luận (0)
TN
Xem chi tiết
TH
29 tháng 4 2023 lúc 16:02

- Xét △AMD và △AHB có: \(\widehat{AMD}=\widehat{AHB}\left(=90^0\right)\)\(\widehat{BAH}\) là góc chung.

\(\Rightarrow\Delta AMD\sim\Delta AHB\left(g-g\right)\)

\(\Rightarrow\dfrac{AM}{AH}=\dfrac{AD}{AB}\Rightarrow AM.AB=AD.AH\left(1\right)\)

- Xét △AND và △AHC có: \(\widehat{AND}=\widehat{AHC}=90^0\)\(\widehat{CAH}\) là góc chung.

\(\Rightarrow\Delta AND\sim\Delta AHC\left(g-g\right)\)

\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AN}{AH}\Rightarrow AD.AH=AN.AC\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow AM.AB=AN.AC\Rightarrow\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét △AMN và △ACB có: \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)(cmt), \(\widehat{BAC}\) là góc chung.

\(\Rightarrow\Delta AMN\sim\Delta ACB\left(c-g-c\right)\)

\(\Rightarrow\widehat{AMN}=\widehat{ACB}\)

Ta có \(OA=OB\) nên △OAB cân tại O.

\(\Rightarrow\widehat{OAB}=\dfrac{180^0-\widehat{AOB}}{2}\)

Xét (O): \(\widehat{AOB}=2\widehat{ACB}\left(=sđ\stackrel\frown{AB}\right)\)

\(\Rightarrow\widehat{OAB}=\dfrac{180^0-2\widehat{ACB}}{2}=90^0-\widehat{ACB}\)

\(\Rightarrow\widehat{OAB}+\widehat{AMN}=90^0\) nên MN vuông góc với OA.

=>MN song song với tiếp tuyến tại A của (O) (vì OA là bán kính của (O) ).

Bình luận (1)
TH
Xem chi tiết
TN
Xem chi tiết
NL
3 tháng 4 2023 lúc 21:23

A

Bình luận (0)
H24
Xem chi tiết
NT
22 tháng 10 2023 lúc 8:06

1: Xét tứ giác AEDB có

\(\widehat{AEB}=\widehat{ADB}=90^0\)

=>AEDB là tứ giác nội tiếp đường tròn đường kính AB

Tâm I là trung điểm của AB

Bán kính là \(IA=\dfrac{AB}{2}\)

2: Xét ΔDBH vuông tại D và ΔDAC vuông tại D có

\(\widehat{DBH}=\widehat{DAC}\left(=90^0-\widehat{ACB}\right)\)

Do đó: ΔDBH đồng dạng với ΔDAC

=>DB/DA=DH/DC

=>\(DB\cdot DC=DA\cdot DH\)

3: ABDE là tứ giác nội tiếp

=>\(\widehat{ADE}=\widehat{ABE}=\widehat{ABN}\)

Xét (O) có

\(\widehat{ABN}\) là góc nội tiếp chắn cung AN

\(\widehat{AMN}\) là góc nội tiếp chắn cung AN

Do đó: \(\widehat{ABN}=\widehat{AMN}\)

=>\(\widehat{HDE}=\widehat{HMN}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên DE//MN

Bình luận (0)
TN
Xem chi tiết
NT
25 tháng 1 2023 lúc 22:15

a: Xét tứ giác BMDH có

gócc BMD+góc BHD=180 độ

=>BMDH là tứ giác nội tiếp

b: góc AMN+góc OAM

=góc ADN+(180 độ-góc AOB)/2

=90 độ-góc HAC+90 độ-góc AOB/2

=180 độ-(90 độ-góc ACB)-góc ACB

=90 độ

=>MN vuông góc AO

=>MN//tiếp tuyến tại A của (O)

Bình luận (0)
L3
Xem chi tiết
HP
15 tháng 5 2021 lúc 17:56

Lớp 10??

Bình luận (0)
TN
Xem chi tiết
TN
Xem chi tiết