TM

Những câu hỏi liên quan
CC
Xem chi tiết
KD
24 tháng 5 2020 lúc 20:08

Là ngành công nghiệp trọng điểm ở nước ta

- Có thế mạnh lâu dài

+ Cơ sở nguyên liệu phong phú:

Than: Than antraxit tập trung ở khu vực Quảng Ninh, trữ lượng hơn 3 tỉ tấn, cho nhiệt lượng 7.000 - 8.000 calo/kg; than nâu,phân bố ở Đồng bằng sông Hồng, trữ lượng hàng chục tỉ tấn; than bùn tập trung nhiều ở Đồng bằng sông Cửu Long, đặc biệt là khu vực U Minh.

Dầu khí: tập trung ở các bể trầm tích chứa dầu ngoài thềm lục địa, trữ lượng vài tỉ tấn dầu và hàng trăm tỉ m3 khí. Hai bể trầm tích có triển vọng nhất về trữ lượng và khả năng khai thác là bể Cửu Long và bể Nam Côn Sơn.

Thủy năng: Tiềm năng rất lớn, vể lí thuyết, công suất có thế đạt khoảng 30 triệu kW với sản lượng 260 - 270 tỉ kWh. Tiềm năng thủy điện tập trung chủ yếu ở hệ thống sông Hồng (37%) và hệ thống sân Đồng Nai (19%).

Các nguồn năng lượng khác như: sức gió, năng lượng mặt trời, thủy triều, địa nhiệt., ở nước ta rất dồi dào.

+ Thị trường tiêu thụ rộng lớn:

• Phục vụ cho tất cả các ngành kinh tế.

• Phục vụ cho nhu cầu của đời sống nhân dân.

- Mang lại hiệu quả kinh tế cao

+ Kinh tế: góp phần đẩy mạnh tốc độ tăng trưởng của các ngành kinh tế, phục vụ sự nghiệp công nghiệp hóa, hiện đại hóa đất nước.

+ Xã hội: phục vụ đời sống nhân dân.

- Tác động mạnh mẽ đến sự phát triển các ngành kinh tế khác

Công nghiệp năng lượng có tác động một cách mạnh mẽ, toàn diện đến các ngành kinh tế khác về các mặt: quy mô của ngành, kĩ thuật - công nghệ, chất lượng sản phẩm...

Bình luận (0)
TN
Xem chi tiết
NP
7 tháng 1 2022 lúc 20:00

Em hãy sắp xếp các thao tác (TT) sau theo thứ tự để xoá một thư mục

Bình luận (0)
LM
Xem chi tiết
HL
10 tháng 4 2019 lúc 23:20

ui trùng hợp

Bình luận (0)
NH
9 tháng 7 2019 lúc 17:13

Trong khổ 1 bài thơ Đất Nước:

- Phương thức biểu đạt chính: Biểu cảm

- Biện pháp tu từ: Điệp từ điệp ngữ. Tác dụng: tác giả muốn phân tích, triết xuất ý nghĩa từng yếu tố làm nên khái niệm Đất Nước. Qua đó, Nguyễn Khoa Điềm muốn khẳng định: Đất Nước có từ lâu đời, đất nước gắn với sự ra đời của huyền thoại, từ những gì thân thuộc, gắn bó nhất với con người.

Bình luận (0)
VD
Xem chi tiết
CT
16 tháng 12 2022 lúc 20:04

khổ thơ...của tác giả...(điền tên tác giả, tác phẩm)đã bộc lộ lên những công việc thường ngày bình dị của 1 gia đình. 2 dòng thơ:"người chị vấn hái lá cho thỏ mẹ, thỏ con" đã cho chúng ta thấy rằng người chị là một người yêu quý động vật, hàng ngày chăm sóc chúng. Còn người em được tác giả khắc lên hình ảnh 1 người con gái đảm đang, chăm chỉ lo bếp lúc, việc nhà. Người bố trong câu thơ trên lại khác với những người bô khác,ông biết nấu cơm, biết mua cá "nấu chua". Qua khổ thơ trên, tác giả đã nói lên được khung cảnh 1 gia đình sống êm đềm, biết phân chia việc làm. Cho thấy tác giả muốn gửi đén chúng ta rằng: hãy biết đoàn kết, chia sẻ và chăm chỉ rèn luyện từ những viẹc nhỏ nhất

Bình luận (0)
NG
Xem chi tiết
H24
1 tháng 4 2019 lúc 19:57

a, Len bị nhiễm điện âm

b, Len được nhận thêm electron còn thủy tinh bị mất bớt electron

c, Vật A bị nhiễm điện âm

Bình luận (2)
LT
Xem chi tiết
NT
4 tháng 12 2023 lúc 23:42

Bài 1:

A(1;8); B(-2;-5); C(-1;2); D(9;-9); E(0;-7)

A(1;8) có \(x_A>0;y_A>0\) nên A nằm ở góc phần tư thứ I

B(-2;-5) có \(x_B=-2< 0;y_B=-5< 0\) nên B nằm ở góc phần tư thứ III

C(-1;2) có \(x_C=-1< 0;y_C=2>0\) nên C nằm ở góc phần tư thứ II

D(9;-9) có \(x_D=9>0;y_D=-9< 0\) nên D nằm ở góc phần tư thứ IV

E(0;-7) có \(x_E=0=0;y_E=-7< 0\) nên E vừa nằm ở góc phần tư thứ II vừa nằm ở góc phần tư thứ III

Bình luận (0)
NY
Xem chi tiết
DH
23 tháng 11 2019 lúc 6:28

a, Ảnh người đó tạo bởi ngương phăng là ảnh ảo. Ảnh cao 1,6m cách gương 1m.

b, Khoảng cách giữa ng đó với gương giảm ( gần hơn)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NL
9 tháng 11 2021 lúc 18:57

SHTQ: \(C_{10}^k.2^k.x^{10-k}\) có hệ số: \(a_k=C_{10}^k2^k\)

Hệ số lớn nhất khi thỏa mãn:

\(\left\{{}\begin{matrix}a_k\ge a_{k+1}\\a_k\ge a_{k-1}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}C_{10}^k2^k\ge C_{10}^{k+1}2^{k+1}\\C_{10}^k2^k\ge C_{10}^{k-1}2^{k-1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{10!}{k!\left(10-k\right)!}\ge\dfrac{10!}{\left(k+1\right)!\left(10-\left(k+1\right)\right)!}.2\\\dfrac{10!}{k!\left(10-k\right)!}.2\ge\dfrac{10!}{\left(k-1\right)!\left(10-\left(k-1\right)\right)!}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{10-k}\ge\dfrac{2}{k+1}\\\dfrac{2}{k}\ge\dfrac{1}{11-k}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}k\ge\dfrac{19}{3}\\k\le\dfrac{22}{3}\end{matrix}\right.\) \(\Rightarrow k=7\)

Hệ số lớn nhất: \(C_{10}^7.2^7\)

Bình luận (0)
AN
Xem chi tiết
NT
30 tháng 10 2020 lúc 22:34

a) Ta có: \(\frac{7\sqrt{2}+2\sqrt{7}}{\sqrt{14}}-\frac{5}{\sqrt{7}+\sqrt{5}}\)

\(=\frac{\sqrt{14}\left(\sqrt{7}+\sqrt{2}\right)}{\sqrt{14}}-\frac{5\left(\sqrt{7}-\sqrt{5}\right)}{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}\)

\(=\frac{2\left(\sqrt{7}+\sqrt{2}\right)-5\left(\sqrt{7}-\sqrt{5}\right)}{2}\)

\(=\frac{2\sqrt{7}+2\sqrt{2}-5\sqrt{7}+5\sqrt{5}}{2}\)

\(=\frac{2\sqrt{2}-3\sqrt{7}+5\sqrt{5}}{2}\)

b) Ta có: \(\frac{\sqrt{2}\left(3+\sqrt{5}\right)}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{\sqrt{2}\left(3-\sqrt{5}\right)}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)

\(=\frac{\sqrt{2}\left(6+2\sqrt{5}\right)}{4\sqrt{2}+\sqrt{2}\cdot\sqrt{6+2\sqrt{5}}}+\frac{\sqrt{2}\left(6-2\sqrt{5}\right)}{4\sqrt{2}-\sqrt{2}\cdot\sqrt{6-2\sqrt{5}}}\)

\(=\frac{6\sqrt{2}+2\sqrt{10}}{4\sqrt{2}+\sqrt{2}\cdot\sqrt{\left(\sqrt{5}+1\right)^2}}+\frac{6\sqrt{2}-2\sqrt{10}}{4\sqrt{2}-\sqrt{2}\cdot\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\frac{6\sqrt{2}+2\sqrt{10}}{4\sqrt{2}+\sqrt{2}\cdot\left|\sqrt{5}+1\right|}+\frac{6\sqrt{2}-2\sqrt{10}}{4\sqrt{2}-\sqrt{2}\cdot\left|\sqrt{5}-1\right|}\)

\(=\frac{6\sqrt{2}+2\sqrt{10}}{4\sqrt{2}+\sqrt{2}\left(\sqrt{5}+1\right)}+\frac{6\sqrt{2}-2\sqrt{10}}{4\sqrt{2}-\sqrt{2}\cdot\left(\sqrt{5}-1\right)}\)(Vì \(\sqrt{5}>1>0\))

\(=\frac{6\sqrt{2}+2\sqrt{10}}{4\sqrt{2}+\sqrt{10}+\sqrt{2}}+\frac{6\sqrt{2}-2\sqrt{10}}{4\sqrt{2}-\sqrt{10}+\sqrt{2}}\)

\(=\frac{6\sqrt{2}+2\sqrt{10}}{5\sqrt{2}+\sqrt{10}}+\frac{6\sqrt{2}-2\sqrt{10}}{5\sqrt{2}-\sqrt{10}}\)

\(=\frac{6+2\sqrt{5}}{5+\sqrt{5}}+\frac{6-2\sqrt{5}}{5-\sqrt{5}}\)

\(=\frac{\left(\sqrt{5}+1\right)^2}{\sqrt{5}\left(\sqrt{5}+1\right)}+\frac{\left(\sqrt{5}-1\right)^2}{\sqrt{5}\left(\sqrt{5}-1\right)}\)

\(=\frac{\sqrt{5}+1+\sqrt{5}-1}{\sqrt{5}}\)

\(=\frac{2\sqrt{5}}{\sqrt{5}}=2\)

c) Đặt \(A=\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}\)

Ta có: \(A=\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}\)

\(\Leftrightarrow A^3=32-12\cdot\left(\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}\right)\)

\(=32-12A\)

\(\Leftrightarrow A^3+12A-32=0\)

\(\Leftrightarrow A^3-2A^2+2A^2-4A+16A-32=0\)

\(\Leftrightarrow A^2\left(A-2\right)+2A\left(A-2\right)+16\left(A-2\right)=0\)

\(\Leftrightarrow\left(A-2\right)\left(A^2+2A+16\right)=0\)

\(A^2+2A+16>0\)

nên A-2=0

hay A=2

Vậy: \(\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}=2\)

Bình luận (0)
 Khách vãng lai đã xóa