Tìm giá trị lớn nhất của : A=x2 -x +1
Mình cảm ơn ạ.
cho phương trình \(x^2-4mx+3m^2-3=0\) (1)
tìm tất cả các giá trị của m để phương trình (1) có 2 nghiệm x1;x2 saocho \(P=\dfrac{2019}{\left|x1-x2\right|}\)
đạt giá trị lớn nhất
giúp mình với ạ ! Mình cảm ơn nhiều :3
Xét \(\Delta=\text{}\)\(\left(-4m\right)^2-4\left(3m^2-3\right)\)\(=4m^2+12>0\forall m\)
=> Pt luôn có hai nghiệm pb
Theo viet \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=3m^2-3\end{matrix}\right.\)
\(P=\dfrac{2019}{\left|x_1-x_2\right|}\)\(\Leftrightarrow P^2=\dfrac{2019^2}{\left(x_1-x_2\right)^2}\)\(=\dfrac{2019^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)\(=\dfrac{2019^2}{16m^2-4\left(3m^2-3\right)}\)
\(=\dfrac{2019^2}{4m^2+12}\le\dfrac{2019^2}{12}\)
\(\Rightarrow P\le\dfrac{2019}{\sqrt{12}}\)
\(\Rightarrow P_{max}=\dfrac{2019\sqrt{12}}{12}\Leftrightarrow m=0\)
Vậy m=0
Tìm giá trị nhỏ nhất của : C=x2+4y2x−2yC=x2+4y2x−2y biết x > 2y và xy = 1
giúp mình gấp vs ạ mình cảm ơn ạ
a) Tìm Giá trị lớn nhất của C = -4x^2 + 4x + 7
b) Tìm giá trị lớn nhất của D = -9x^2 -x - 4
Mọi người giúo em với ạ :)) em cảm ơn
Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức A=\(\frac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)
Giúp mình với ạ!!! Mình cảm ơn rất nhiều ạ!!!
ĐK: \(x\ge0\)
+) Với x = 0 => A = 0
+) Với x khác 0
Ta có: \(\frac{1}{A}=\frac{3}{4}\sqrt{x}-\frac{3}{4}+\frac{3}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)-\frac{3}{4}\ge\frac{3}{4}.2-\frac{3}{4}=\frac{3}{4}\)
=> \(A\le\frac{4}{3}\)
Dấu "=" xảy ra <=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\)<=> x = 1
Vậy max A = 4/3 tại x = 1
Còn có 1 cách em quy đồng hai vế giải đenta theo A thì sẽ tìm đc cả GTNN và GTLN
Tìm giá trị nhỏ nhất của các biểu thức sau :
C=|x-1|+|x-5|
Tìm giá trị lớn nhất .....
a) C=3-|2x-5| b / D= 1 / 2|x-1|+3
Giúp mình với mình đang cần gấp cảm ơn ạ!
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
Tìm giá trị lớn nhất của biểu thức (Max):
C = -2x(x+7)
D = -3x^2+5x-9
Giúp mình nhé! Cảm ơn ạ!
`C=-2x(x+7)=-2x^2-14x`
`=-(2x^2+14x)`
`=-( (\sqrt2x)^2 + 2.\sqrt2 x . (7\sqrt2)/2 + ((7\sqrt2)/2)^2 )+49/2`
`=-(\sqrt2x+(7\sqrt2)/2)^2+49/2`
`=> C_(max) = 49/2 <=> x=-7/2`
`D=-3x^2+5x-9`
`=-(3x^2-5x+9)`
`=-((\sqrt3x)^2 - 2.\sqrt3x . (5\sqrt3)/6 + ((5\sqrt3)/6)^2)-83/12`
`=-(\sqrt3x-(5\sqrt3)/6)^2-83/12`
`=> D_(max)=-83/12 <=> \sqrt3x - (5\sqrt3)/6=0 <=> x=5/6`
a) Ta có: \(C=-2x\left(x+7\right)\)
\(=-2\left(x^2+7x\right)\)
\(=-2\left(x^2+7x+\dfrac{49}{4}-\dfrac{49}{4}\right)\)
\(=-2\left(x+\dfrac{7}{2}\right)^2+\dfrac{49}{2}\le\dfrac{49}{2}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{7}{2}\)
b) Ta có: \(D=-3x^2+5x-9\)
\(=-3\left(x^2-\dfrac{5}{3}x+3\right)\)
\(=-3\left(x^2-2\cdot x\cdot\dfrac{5}{6}+\dfrac{25}{36}+\dfrac{83}{36}\right)\)
\(=-3\cdot\left(x-\dfrac{5}{6}\right)^2-\dfrac{83}{12}\le-\dfrac{83}{12}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{6}\)
Mọi người giúp mình bài này với!
Tìm giá trị lớn nhất của biểu thức:
2x - x2 - 4 -x2 - 4x
Cảm ơn mọi người đã giúp!
A = 2\(x\) - \(x^2\) - 4
A = -(\(x^2\) - 2\(x\) + 1) - 3
A = - (\(x-1\))2 - 3
Vì (\(x-1\))2 ≥ 0 ⇒ -(\(x\) - 1)2 ≤ 0 ⇒ -( \(x\) - 1)2 - 3 ≤ - 3
Amax = -3 ⇔ \(x\) - 1 = 0 ⇔ \(x\) = 1
Vậy giá trị lớn nhất của biểu thức là 0 xảy ra khi \(x\) = 1
B = - \(x^2\) - 4\(x\)
B = -( \(x^2\) + 4\(x\) + 4) + 4
B = -(\(x\) + 2)2 + 4
Vì (\(x\) + 2)2 ≥ 0 ⇒ - (\(x\) + 2)2 ≤ 0 ⇒ -(\(x+2\))2 + 4 ≤ 0
Bmax = 4 ⇔ \(x+2=0\Rightarrow x=-2\)
Kết luận giá trị lớn nhất của biểu thức là 4 xảy ra khi \(x\) = - 2
tìm giá trị lớn nhất của √3-√(x-1)
Các bn ghi hộ t cách giải nhé
cảm ơn ạ =]]
Tìm GTLN: \(A=\sqrt{3}-\sqrt{x-1}.\)
Điều kiện: x>=0
Ta có: \(\sqrt{x-1}\ge0\forall x\ge0\Rightarrow-\sqrt{x-1}\le0\Rightarrow\sqrt{3}-\sqrt{x-1}\le\sqrt{3}\)
Nên GTLN của A bằng \(\sqrt{3}\)khi x=0.
điều kiện x - 1 >= 0 => x >= 1
ta có : \(\sqrt{x-1}\ge0.\)với mọi x >=1
=> \(\sqrt{3}-\sqrt{x-1}\le\sqrt{3}\)
Vậy Giá trị lớn nhất \(\sqrt{3}-\sqrt{x-1}=\sqrt{3}\)tại x = 1
Các bạn giúp mk giải bài này với:
a)Tìm giá trị nhỏ nhất của biểu thức
A=|x+2|+|9-x|
b)Tìm giá trị lớn nhất của biểu thức:
B=3/4-(x-1)2
Các bạn ơi mk cần gấp ạ!Cảm ơn!
a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)
Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)
Vậy MinA = 11 khi -2 =< x =< 9
b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)
Dấu "=" xảy ra khi x = 1
Vậy MaxB = 3/4 khi x=1
Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)
Vậy \(A_{min}=11\) khi \(2\le x\le9\)