Cho a-3b+2
Cho a, b, c thỏa \(\frac{a}{2a+3b+4c}+\frac{3b}{6b+4c+a}+\frac{4c}{8c+a+3b}=\frac{3}{4}.\)
Chứng minh rằng: \(\frac{a^2}{2a+3b+4c}+\frac{9b^2}{6b+4c+a}+\frac{16c^2}{8c+a+3b}=\frac{a+3b+4c}{4}\)
Cho a > b, hãy so sánh:
a) − 3 a + 4 và − 3 b + 4 b) 2 − 3 a và 2 − 3 b
Sử dụng mối liên hệ giữa thứ tự và phép nhân, phép cộng, chúng ta thu được
a) -3a + 4 < -3b + 4; b) 2 - 3a < 2 - 3b.
cho M=\(\frac{2\sqrt{a}\left(\sqrt{a}+\sqrt{2a}-\sqrt{3b}\right)+\sqrt{3b}\left(2\sqrt{a}-\sqrt{3b}\right)-2a\sqrt{a}}{a\sqrt{2}+\sqrt{3ab}}\)
rút gọn M
cho a^2 -b^2 =4c^2 cmr (5a-3b+8c) (5a-3b-8c)=(3a-5b)^2
Cho a2 + 9b2 = 8ab. Tính P = (a+3b)2/(a-3b)2
Điều kiện \(a;b\ne0\)
\(a^2+9b^2=8ab\Leftrightarrow a^2+9b^2+6ab=14ab\Leftrightarrow\left(a+3b\right)^2=6ab\)
\(a^2+9b^2=8ab\Leftrightarrow a^2+9b^2-6ab=2ab\Leftrightarrow\left(a-3b\right)^2=2ab\)
\(\Rightarrow P=\frac{6ab}{2ab}=3\)
Cho a/b =c/d CM: a) 5a+3b/5c+3d=5a-3b/5c-3d. b) a^2+b^2/c^2+d^2=(a+b/c+d)^2
Vt lại đề nhé (khó nhìn)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh : \(\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=x\Rightarrow a=bx;c=dx\)
Lần lượt thay vào các vế, ta được :
\(\dfrac{5a+3b}{5a-3b}=\dfrac{5.b.x+3b}{5.b.x+3b}=\dfrac{b\left(5x+3\right)}{b\left(5x+3\right)}=\dfrac{5x+3}{5x+3}\left(1\right)\)
\(\dfrac{5c-3d}{5c-3d}=\dfrac{5.d.x-3d}{5.d.x-3d}=\dfrac{d\left(5x-3\right)}{d\left(5x-3\right)}=\dfrac{5x-3}{5x-3}\left(2\right)\)
Từ \(\left(1\right)và\left(2\right)\)
\(\Rightarrow\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\left(đpcm\right)\)
Cho a - b = 10 . Tính:
A = ( 2a - 3b )2 +2( 2a - 3b )( 3a - 2b ) + ( 2b - 3a )2
Cho \(\dfrac{a}{3}\)=\(\dfrac{b}{5}\).Tính giá trị biểu thức C=\(\dfrac{5a^2+3b^2}{10a^2-3b^2}\)
Đặt a/3=b/5=k
=>a=3.k
=>a2=9.k2
=>b=5.k
=>b2=25.k2
Ta có: C= 5a2+3b2/10a2-3b2
=> c= 5.9.k2+3.25.k2/10.9.k2-3.25.k2
=> C= k2.(5.9+3.25) / k2.(9.10-3.25)
=> C= 120/15
=> C=8
Nếu đúng tick giúp mik nha
Cho \(\dfrac{a}{3}\)=\(\dfrac{b}{5}\).Tính giá trị biểu thức C=\(\dfrac{5a^2+3b^2}{10a^2-3b^2}\)
cho a/b=c/d chứng minh:
a ) 5a+3b/5a-3b = 5c+3d
b) a^2+B^2/c^2+d^2=a.b/c.d
a) de sai
b) do a/b =c/d =>a/c =b/d =k (1) => k^2 = a.c /bd
tu (1) =>k^2 =a^2/ c^2 =b^2/ d^2 =a^2+b^2 /c^2+d^2
=>a^2 +b^2 /c^2 +d^2 = a.c /bd