Những câu hỏi liên quan
TN
Xem chi tiết
H9
11 tháng 7 2023 lúc 6:12

1) \(5-\left(1+\dfrac{1}{3}\right):\left(1-\dfrac{1}{3}\right)\)

\(=5-\dfrac{4}{3}:\dfrac{2}{3}\)

\(=5-\dfrac{4}{3}\cdot\dfrac{3}{2}\)

\(=5-\dfrac{4}{2}\)

\(=5-2\)

\(=3\)

b) \(\left(1+\dfrac{2}{3}-\dfrac{5}{4}\right)-\left(1-\dfrac{5}{4}\right)+2022-\dfrac{2}{3}\)

\(=1+\dfrac{2}{3}-\dfrac{5}{4}-1+\dfrac{5}{4}++2022-\dfrac{2}{3}\)

\(=\left(1-1\right)+\left(\dfrac{2}{3}-\dfrac{2}{3}\right)+\left(-\dfrac{5}{4}+\dfrac{5}{4}\right)+2022\)

\(=0+0+0+2022\)

\(=2022\)

2) \(0,7^2\cdot x=0,49^2\)

\(\Rightarrow x=\dfrac{0,49^2}{0,7^2}\)

\(\Rightarrow x=\left(\dfrac{0,49}{0,7}\right)^2\)

\(\Rightarrow x=\left(0,7\right)^2\)

\(\Rightarrow x=0,49\)

b) \(x:\left(-0,5\right)^3=\left(0,5\right)^2\)

\(\Rightarrow x=\left(0,5\right)^2\cdot\left(-0,5\right)^3\)

\(\Rightarrow x=\left(-0,5\right)^5\)

\(\Rightarrow x=-\dfrac{1}{32}\)

Bình luận (0)
NT
10 tháng 7 2023 lúc 23:55

2:

a: =>x*0,49=0,49^2

=>x=0,49

b: =>x=(0,5)^2*(-1)*(0,5)^3=-(0,5)^5

Bình luận (0)
TB
Xem chi tiết

a,

=x3+1-(x3-1)

=x3+1-x3+1

=2

b,

tự làm nha bạn

Bình luận (0)
LN
Xem chi tiết
NT
2 tháng 12 2023 lúc 20:01

Bài 4:

1: \(\left(x-1\right)\left(x^2+x+1\right)-x^3-6x=11\)

=>\(x^3-1-x^3-6x=11\)

=>-6x-1=11

=>-6x=11+1=12

=>\(x=\dfrac{12}{-6}=-2\)

2: \(16x^2-\left(3x-4\right)^2=0\)

=>\(\left(4x\right)^2-\left(3x-4\right)^2=0\)

=>\(\left(4x-3x+4\right)\left(4x+3x-4\right)=0\)

=>(x+4)(7x-4)=0

=>\(\left[{}\begin{matrix}x+4=0\\7x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{4}{7}\end{matrix}\right.\)

3: \(x^3-x^2-3x+3=0\)

=>\(\left(x^3-x^2\right)-\left(3x-3\right)=0\)

=>\(x^2\left(x-1\right)-3\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x^2-3\right)=0\)

=>\(\left[{}\begin{matrix}x-1=0\\x^2-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)

4: \(\dfrac{x-1}{x+2}=\dfrac{x+2}{x+1}\)(ĐKXĐ: \(x\notin\left\{-2;-1\right\}\))

=>\(\left(x+2\right)^2=\left(x-1\right)\left(x+1\right)\)

=>\(x^2+4x+4=x^2-1\)

=>4x+4=-1

=>4x=-5

=>\(x=-\dfrac{5}{4}\left(nhận\right)\)

5: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)

\(\dfrac{1}{x}+\dfrac{2}{x+1}=0\)

=>\(\dfrac{x+1+2x}{x\left(x+1\right)}=0\)

=>3x+1=0

=>3x=-1

=>\(x=-\dfrac{1}{3}\left(nhận\right)\)

6: ĐKXĐ: \(x\notin\left\{0;3\right\}\)

\(\dfrac{9-x^2}{x}:\left(x-3\right)=1\)

=>\(\dfrac{-\left(x^2-9\right)}{x\left(x-3\right)}=1\)

=>\(\dfrac{-\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}=1\)

=>\(\dfrac{-x-3}{x}=1\)

=>-x-3=x

=>-2x=3

=>\(x=-\dfrac{3}{2}\left(nhận\right)\)

Bình luận (0)
MN
Xem chi tiết
MN
9 tháng 12 2018 lúc 13:02

trả lời nhanh hộ mình với cảm ơn :(

Bình luận (0)
LN
9 tháng 12 2018 lúc 14:16

theo cách tính tổng (bn có thể xem lại ở toán 7 hay 6 j đấy) thì bt trên bằng 1/x - 1/(x+5)

từ đó tính tiếp nha bn

Bình luận (0)
H24
Xem chi tiết
XK
Xem chi tiết
H24
Xem chi tiết
DV
Xem chi tiết
NM
18 tháng 11 2021 lúc 16:34

\(a,=\dfrac{4\sqrt{x}-4-2\sqrt{x}-2-\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\left(x\ge0;x\ne1\right)\\ =\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{1}{\sqrt{x}+1}\\ b,=\dfrac{x^2+4x+3+x^2+4x+4}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{x+1}{x+3}\left(x\ne-1;x\ne-2;x\ne-3\right)\\ =\dfrac{\left(2x^2+8x+7\right)\left(x+1\right)}{\left(x+2\right)\left(x+3\right)^2}\)

Bình luận (0)
DV
Xem chi tiết
H24
18 tháng 11 2021 lúc 15:13

\(a,\dfrac{4}{\sqrt{x}+1}+\dfrac{2}{1-\sqrt{x}}-\dfrac{\sqrt{x}-5}{x-1}\)

\(=\dfrac{4\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{4\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{4\sqrt{x}-4-2\sqrt{x}-2-\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{1}{\sqrt{x}+1}\)

\(b,\left(\dfrac{x+1}{x+2}+\dfrac{x+2}{x+3}\right):\dfrac{x+3}{x+1}\)

\(=\left(\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}+\dfrac{\left(x+2\right)^2}{\left(x+2\right)\left(x+3\right)}\right).\dfrac{x+1}{x+3}\)

\(=\left(\dfrac{x^2+4x+3}{\left(x+2\right)\left(x+3\right)}+\dfrac{x^2+4x+4}{\left(x+2\right)\left(x+3\right)}\right).\dfrac{x+1}{x+3}\)

\(=\dfrac{x^2+4x+3+x^2+4x+4}{\left(x+2\right)\left(x+3\right)}.\dfrac{x+1}{x+3}\)

\(=\dfrac{2x^2+8x+7}{\left(x+2\right)\left(x+3\right)}.\dfrac{x+1}{x+3}\)

\(=\dfrac{\left(2x^2+8x+7\right)\left(x+1\right)}{\left(x+2\right)\left(x+3\right)^2}\)

\(=\dfrac{\left(2x^2+8x+7\right).x+2x^2+8x+7}{\left(x+2\right)\left(x+3\right)^2}\)

\(=\dfrac{2x^3+8x^2+7x+2x^2+8x+7}{\left(x+2\right)\left(x+3\right)^2}\)

\(=\dfrac{2x^3+10x^2+15x+7}{\left(x+2\right)\left(x+3\right)^2}\)

Bình luận (0)