Những câu hỏi liên quan
H24
Xem chi tiết
NT
10 tháng 5 2023 lúc 23:54

\(y'=2021\cdot cos\left(x\sqrt{x}\right)^{2020}\cdot\left(cos\left(x\sqrt{x}\right)\right)'\)

\(=2021\cdot\left(-x\sqrt{x}\right)'\cdot sin\left(x\sqrt{x}\right)\cdot cos\left(x\sqrt{x}\right)^{2020}\)

\(=-2021\cdot\dfrac{\left(x^3\right)'}{2\sqrt{x^3}}\cdot sin\left(x\sqrt{x}\right)\cdot cos^{2020}x\sqrt{x}\)

\(=-2021\cdot\dfrac{3x^2}{2x\sqrt{x}}\cdot sin\left(x\sqrt{x}\right)\cdot cos^{2020}x\sqrt{x}\)

\(=-\dfrac{6063}{2}\sqrt{x}\cdot sin\left(x\sqrt{x}\right)\cdot cos^{2020}x\sqrt{x}\)

Bình luận (1)
H24
Xem chi tiết
HM
24 tháng 8 2023 lúc 11:34

\(y'=2\left(tan^2x\right)'+3\left[cot\left(\dfrac{\pi}{3}-2x\right)\right]'\\ =2\cdot2tanx\cdot\left(tanx\right)'+3\cdot\dfrac{-\left(\dfrac{\pi}{3}-2x\right)'}{sin^2\left(\dfrac{\pi}{3}-2x\right)}\\ =\dfrac{4tanx}{cos^2x}+\dfrac{6}{sin^2\left(\dfrac{\pi}{3}-2x\right)}\)

Bình luận (0)
H24
Xem chi tiết
HM
22 tháng 9 2023 lúc 14:56

a) Đặt \(u = 3{\rm{x}}\) thì \(y = \sin u\). Ta có: \(u{'_x} = {\left( {3{\rm{x}}} \right)^\prime } = 3\) và \(y{'_u} = {\left( {\sin u} \right)^\prime } = \cos u\).

Suy ra \(y{'_x} = y{'_u}.u{'_x} = \cos u.3 = 3\cos 3{\rm{x}}\).

Vậy \(y' = 3\cos 3{\rm{x}}\).

b) Đặt \(u = \cos 2{\rm{x}}\) thì \(y = {u^3}\). Ta có: \(u{'_x} = {\left( {\cos 2{\rm{x}}} \right)^\prime } =  - 2\sin 2{\rm{x}}\) và \(y{'_u} = {\left( {{u^3}} \right)^\prime } = 3{u^2}\).

Suy ra \(y{'_x} = y{'_u}.u{'_x} = 3{u^2}.\left( { - 2\sin 2{\rm{x}}} \right) = 3{\left( {\cos 2{\rm{x}}} \right)^2}.\left( { - 2\sin 2{\rm{x}}} \right) =  - 6\sin 2{\rm{x}}{\cos ^2}2{\rm{x}}\).

Vậy \(y' =  - 6\sin 2{\rm{x}}{\cos ^2}2{\rm{x}}\).

c) Đặt \(u = \tan {\rm{x}}\) thì \(y = {u^2}\). Ta có: \(u{'_x} = {\left( {\tan {\rm{x}}} \right)^\prime } = \frac{1}{{{{\cos }^2}x}}\) và \(y{'_u} = {\left( {{u^2}} \right)^\prime } = 2u\).

Suy ra \(y{'_x} = y{'_u}.u{'_x} = 2u.\frac{1}{{{{\cos }^2}x}} = 2\tan x\left( {{{\tan }^2}x + 1} \right)\).

Vậy \(y' = 2\tan x\left( {{{\tan }^2}x + 1} \right)\).

d) Đặt \(u = 4 - {x^2}\) thì \(y = \cot u\). Ta có: \(u{'_x} = {\left( {4 - {x^2}} \right)^\prime } =  - 2{\rm{x}}\) và \(y{'_u} = {\left( {\cot u} \right)^\prime } =  - \frac{1}{{{{\sin }^2}u}}\).

Suy ra \(y{'_x} = y{'_u}.u{'_x} =  - \frac{1}{{{{\sin }^2}u}}.\left( { - 2{\rm{x}}} \right) = \frac{{2{\rm{x}}}}{{{{\sin }^2}\left( {4 - {x^2}} \right)}}\).

Vậy \(y' = \frac{{2{\rm{x}}}}{{{{\sin }^2}\left( {4 - {x^2}} \right)}}\).

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 8 2019 lúc 13:42

Đáp án là B

Bình luận (0)
H24
Xem chi tiết
BK
17 tháng 8 2023 lúc 11:19

tham khảo:

a)\(y'=xsin2x+sin^2x\)

\(y'=sin^2x+xsin2x\)

b)\(y'=-2sin2x+2cosx\\ y'=2\left(cosx-sin2x\right)\)

c)\(y=sin3x-3sinx\)

\(y'=3cos3x-3cosx\)

d)\(y'=\dfrac{1}{cos^2x}-\dfrac{1}{sin^2x}\)

\(y'=\dfrac{sin^2x-cos^2x}{sin^2x.cos^2x}\)

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 4 2018 lúc 13:15

Bình luận (0)
H24
Xem chi tiết
QL
22 tháng 9 2023 lúc 20:23

\(f'\left( x \right) =  - \frac{1}{{{{\sin }^2}x}} \Rightarrow f'\left( { - \frac{\pi }{3}} \right) =  - \frac{1}{{{{\sin }^2}\left( { - \frac{\pi }{3}} \right)}} =  - \frac{4}{3}\)

Bình luận (0)
SK
Xem chi tiết
NT
Xem chi tiết
NL
3 tháng 10 2021 lúc 18:36

\(y'=\dfrac{2-\left(-m^2-m\right)}{\left(x+2\right)^2}=\dfrac{m^2+m+2}{\left(x+2\right)^2}\)

Sử dụng công thức: \(\left(\dfrac{ax+b}{cx+d}\right)'=\dfrac{ad-bc}{\left(cx+d\right)^2}\)

Bình luận (0)