\(\dfrac{1-3-5-7-...-49}{90}\)
Thực hiện phép tính:
\(A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(B=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\dfrac{2^2}{7^2}-\dfrac{4}{343}}\)
\(B=\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\frac{2^2}{7^2}-\frac{4}{343}}\)
\(B=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{\frac{8}{2}-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(B=\frac{\frac{343}{343}-\frac{49}{343}+\frac{7}{343}-\frac{1}{343}}{4-\frac{4}{7}+\frac{28}{343}-\frac{4}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{28}{7}-\frac{4}{7}+\frac{24}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{24}{7}+\frac{24}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{1323}{343}+\frac{24}{343}}\)
\(B=\frac{300}{343}:\frac{1347}{343}\)
\(B=\frac{100}{449}\)
\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(A=\frac{2^{12}.3^5-2^{12}.3^6}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^6}{5^9.7^3+5^9.2^3.7^3}\)
\(A=\frac{2^{12}.3^5\left(1-3\right)}{2^{12}.3^5.\left(3+1\right)}-\frac{5^{10}.7^3.\left(1-7^3\right)}{5^9.7^3.\left(1+8\right)}\)
\(A=\frac{-2}{4}-\frac{5.\left(-342\right)}{9}\)
\(A=\frac{-1}{2}+\frac{1710}{9}\)
\(A=\frac{-1}{2}+190\)
\(A=\frac{-1}{2}+\frac{380}{2}\)
\(A=\frac{379}{2}\)
\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^3+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(A=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{\left(2^2\right)^6.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{\left(5^3\right)^3.7^3+5^9.\left(2.7\right)^3}\)
\(A=\frac{2^{12}.3^5-2^{12}.3^4}{2^6.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)
\(A=\frac{2^{12}\left(3^5-3^4\right)}{2^6\left(3^6-3^5\right)}-\frac{5^{10}\left(7^3-7^4\right)}{5^9\left(7^3+2^3.7^3\right)}\)
\(A=\frac{2^6\left(3^5-3^4\right)}{3^6-3^5}-\frac{5\left(7^3-7^4\right)}{7^3+2^3.7^3}\) ( \(\frac{5\left(7^3-7^4\right)}{7^3.1+2^3.7^3}=\frac{5\left(7^3-7^4\right)}{7^3\left(1+2^3\right)}\))
\(A=\frac{2^6\left(3^5-3^4\right)}{3^6-3^5}-\frac{5\left(7^3-7^4\right)}{7^3\left(1+2^3\right)}\)
\(A=\frac{2^6.162}{486}-\frac{5.\left(-2058\right)}{7^3.9}\)
\(\Rightarrow A=\frac{648}{486}-\frac{-12540}{3087}\)
bạn tự tính nha máy tính mình mất r
tìm x biết
a) \(\dfrac{x}{27}=\dfrac{-3}{x}\)
b) \(\dfrac{-9}{x}=\dfrac{-x}{\dfrac{4}{49}}\)
c)\(\left|7x-\dfrac{5}{3}\right|+\dfrac{7}{19}=\dfrac{-8}{15}\)
d)\(\left|\dfrac{1}{23}x\right|+\dfrac{18}{90}=\dfrac{18}{19}-1\dfrac{2}{5}\)
Mình chỉ giải câu a thôi,mấy câu còn lại dễ.
a)Ta có:\(\dfrac{x}{27}=\dfrac{-3}{x}\)
=>\(x^2=-3\cdot27=-81\)(Nhân chéo)
Mà x2>0 với mọi x nên :
Không có giá trị nào thỏa mãn điều kiện của x
Tìm x biết :
a) \(\dfrac{x}{27}=-\dfrac{3}{x}\) \(\Rightarrow2x=-3.27\Rightarrow2x=-81\Rightarrow x=-40,5\)
b) \(-\dfrac{9}{x}=-\dfrac{x}{\dfrac{4}{49}}\Rightarrow2x=-9.\left(-\dfrac{4}{9}\right)\Rightarrow2x=4\Rightarrow x=2\)
c) \(\left|7x-\dfrac{5}{3}\right|+\dfrac{7}{19}=-\dfrac{8}{15}\) ( mk nghĩ bn chép sai đề bài câu này )
\(\Rightarrow\left|7x-\dfrac{5}{3}\right|=-\dfrac{8}{15}-\dfrac{7}{19}\)
\(\Rightarrow\left|7x-\dfrac{5}{3}\right|=-\dfrac{257}{285}\)
\(\Rightarrow\left[{}\begin{matrix}7x-\dfrac{5}{3}=-\dfrac{257}{285}\\7x-\dfrac{5}{3}=\dfrac{257}{285}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{218}{1995}\\x=\dfrac{244.}{665}\end{matrix}\right.\)
d) \(\left|\dfrac{1}{23}x\right|+\dfrac{18}{90}=\dfrac{18}{19}-1\dfrac{2}{5}\)
\(\left|\dfrac{1}{23}x\right|+\dfrac{18}{90}=-\dfrac{43}{95}\)
\(\left|\dfrac{1}{23}x\right|=-\dfrac{43}{95}-\dfrac{18}{90}\)
\(\left|\dfrac{1}{23}x\right|=-\dfrac{62}{95}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{23}x=\dfrac{62}{95}\\\dfrac{1}{23}x=-\dfrac{62}{95}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=15\dfrac{1}{95}\\x=-15\dfrac{1}{95}\end{matrix}\right.\)
a)
\(\dfrac{x}{27}=\dfrac{-3}{x}\\ \Leftrightarrow x^2=-81\\ \Leftrightarrow x\in\varnothing\)
b)
\(-\dfrac{9}{x}=\dfrac{-x}{\dfrac{4}{49}}\\ \Leftrightarrow-9.\dfrac{4}{49}=-x^2\\ \Leftrightarrow-x^2=\dfrac{-36}{49}\\ \Leftrightarrow x^2=\dfrac{36}{49}\\ \Leftrightarrow x=\pm\dfrac{6}{7}\)
c)
\(\left|7x-\dfrac{5}{3}\right|+\dfrac{7}{19}=-\dfrac{8}{15}\\ \Rightarrow\left|7x-\dfrac{5}{3}\right|=\dfrac{-257}{285}\\ \)
Mà \(\left|7x-\dfrac{5}{3}\right|\ge0\Rightarrow x\in\varnothing\)
d) \(\left|\dfrac{1}{23}x\right|+\dfrac{18}{90}=\dfrac{18}{19}-1\dfrac{2}{5}\\ \Rightarrow\left|\dfrac{1}{23}x\right|+\dfrac{18}{90}=-\dfrac{43}{95}\\ \Rightarrow\left|\dfrac{1}{23}x\right|=-\dfrac{62}{95}\\ \Rightarrow x\in\varnothing\)
Thực hiện phép tính:
\(A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(B=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\dfrac{2^2}{7^2}-\dfrac{4}{343}}\)
\(A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(=\dfrac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\dfrac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{\left(5^3\right)^3.7^3+5^9.\left(2.7\right)^3}\)
\(=\dfrac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\dfrac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)
= \(\dfrac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\dfrac{5^{10}.7^3\left(1-7\right)}{5^9.7^3\left(1+2^3\right)}\)
= \(\dfrac{2}{3.4}-\dfrac{5\left(-6\right)}{9}\)
= \(\dfrac{7}{2}\)
\(a,\dfrac{-8}{5}:\left(1+\dfrac{2}{3}\right)\) \(b,\dfrac{7}{5}x\dfrac{15}{49}-\left(\dfrac{4}{5}+\dfrac{2}{3}\right):\dfrac{11}{5}\)
\(c,\dfrac{1}{3}:\left(\dfrac{2}{9}-\dfrac{7}{8}\right)\) \(d,\left(\dfrac{1}{6}-\dfrac{4}{5}\right):\dfrac{7}{5}\)
Giúp mik nha:>>
A -\(\dfrac{24}{25}\)
B -\(\dfrac{5}{21}\)
C -\(\dfrac{24}{47}\)
D -\(\dfrac{19}{42}\)
tick cho mk
log3\(\sqrt{3}\)=... , log100=... , lne3=... , log27 3=... , log\(\sqrt{3}\)3=... , log0,125 2=... , log\(\sqrt[3]{49}\)7=...,
log\(\dfrac{1}{125}\)5=... , log8 4=... , log25\(\dfrac{1}{5}\)=... , log\(\dfrac{1}{5}\)\(\sqrt{5}\)=... , log\(\dfrac{1}{7}\)\(\sqrt[5]{49}\)=... , log4 \(\dfrac{1}{\sqrt{2}}\)=... , log27 \(3\sqrt{3}\)=...
\(log_3\sqrt{3}=log_33^{\dfrac{1}{2}}=\dfrac{1}{2}\)
\(lne^3=log_ee^3=3\)
\(log_{27}3=log_{3^3}3=\dfrac{1}{3}\)
\(\log_{\sqrt{3}}3=log_{3^{\dfrac{1}{2}}}3=1:\dfrac{1}{2}=2\)
\(\log_{0,125}2=log_{2^{-3}}2=\dfrac{1}{-3}\)
\(\log_{\sqrt[3]{49}}7=\log_{7^{\dfrac{2}{3}}}7=1:\dfrac{2}{3}=\dfrac{3}{2}\)
\(\log_{\dfrac{1}{125}}5=\log_{5^{-3}}5=-\dfrac{1}{3}\)
\(\log_84=log_{2^3}2^2=\dfrac{1}{3}\cdot2=\dfrac{2}{3}\)
\(\log_{25}\left(\dfrac{1}{5}\right)=\log_{5^2}5^{-1}=\dfrac{1}{2}\cdot\left(-1\right)=-\dfrac{1}{2}\)
\(\log_{\dfrac{1}{5}}\sqrt{5}=\log_{5^{-1}}5^{\dfrac{1}{2}}=\dfrac{1}{-1}\cdot\dfrac{1}{2}=-\dfrac{1}{2}\)
\(log_{\dfrac{1}{7}}\sqrt[5]{49}=\log_{7^{-1}}7^{\dfrac{2}{5}}=\dfrac{1}{-1}\cdot\dfrac{2}{5}=-\dfrac{2}{5}\)
\(\log_4\left(\dfrac{1}{\sqrt{2}}\right)=\log_{2^2}\left(\sqrt{2}\right)^{-1}\)
\(=\log_{2^{-2}}\left(\sqrt{2}\right)^{-\dfrac{1}{2}}=\dfrac{1}{-2}\cdot\dfrac{-1}{2}=\dfrac{1}{4}\)
\(\log_{27}3\sqrt{3}=\log_{3^3}3^{\dfrac{3}{2}}=\dfrac{1}{3}\cdot\dfrac{3}{2}=\dfrac{1}{2}\)
x:[ \(\dfrac{8}{5}\) . (\(\dfrac{2}{3}\))\(^2\) - \(\dfrac{2}{5}\) ] = \(\dfrac{15}{7}+\dfrac{6}{5}\) [(2\(\dfrac{1}{7}\))\(^2\) - \(\dfrac{50}{49}\) ]
tìm x
giúp mk nhó
\(x:\left[\dfrac{8}{5}\cdot\left(\dfrac{2}{3}\right)^2-\dfrac{2}{5}\right]=\dfrac{15}{7}+\dfrac{6}{5}\left[\left(2\dfrac{1}{7}\right)^2-\dfrac{50}{49}\right]\)
\(\Leftrightarrow x:\left[\dfrac{32}{45}-\dfrac{18}{45}\right]=\dfrac{15}{7}+\dfrac{6}{5}\cdot\left(\dfrac{225}{49}-\dfrac{50}{49}\right)\)
\(\Leftrightarrow x:\dfrac{14}{45}=\dfrac{15}{7}+\dfrac{6}{5}\cdot\dfrac{25}{7}\)
\(\Leftrightarrow x:\dfrac{14}{45}=\dfrac{45}{7}\)
\(\Leftrightarrow x=2\)
\(\sqrt{\dfrac{16}{49}}+\left(\dfrac{1}{2}\right)^3-\left|-\dfrac{4}{7}\right|-\dfrac{7}{8}\)
\(\left|\dfrac{1}{2}-\dfrac{3}{5}\right|\cdot\sqrt{9}+0.5\cdot\left(-2\dfrac{3}{5}\right)\)
\(\sqrt{\dfrac{16}{49}}+\left(\dfrac{1}{2}\right)^3-\left|-\dfrac{4}{7}\right|-\dfrac{7}{8}\)
\(=\dfrac{4}{7}+\dfrac{1}{8}-\dfrac{4}{7}-\dfrac{7}{8}\)
\(=\dfrac{1}{8}-\dfrac{7}{8}=-\dfrac{6}{8}=-\dfrac{3}{4}\)
\(\left|\dfrac{1}{2}-\dfrac{3}{5}\right|\cdot\sqrt{9}+0,5\left(-2\dfrac{3}{5}\right)\)
\(=\left|\dfrac{5-6}{10}\right|\cdot3+\dfrac{1}{2}\cdot\dfrac{-13}{5}\)
\(=\dfrac{1}{10}\cdot3+\dfrac{1}{2}\cdot\dfrac{-13}{5}\)
\(=\dfrac{3}{10}-\dfrac{13}{10}=-\dfrac{10}{10}=-1\)
Giải các phương trình sau:
a) \(\dfrac{3}{x-7}+\dfrac{2}{x+7}=\dfrac{5}{x^2-49}\)
b) \(\dfrac{2x-1}{3}-\dfrac{x+3}{2}>1+\dfrac{5x}{6}\)
a) \(\dfrac{3}{x-7}+\dfrac{2}{x+7}=\dfrac{5}{x^2-49}\)
(ĐKXĐ: x khác 7; x khác -7)
<=>\(\dfrac{3.\left(x+7\right)}{\left(x-7\right).\left(x+7\right)}+\dfrac{2.\left(x-7\right)}{\left(x+7\right).\left(x-7\right)}=\dfrac{5}{\left(x+7\right).\left(x-7\right)}\)
=> 3x + 21 + 2x - 14 = 5
<=> 3x + 2x = 5 + 14 - 21
<=> 5x = -2
<=> x = \(\dfrac{-2}{5}\)
Vậy S = { \(\dfrac{-2}{5}\) }
b) \(\dfrac{2x-1}{3}-\dfrac{x+3}{2}>1+\dfrac{5x}{6}\)
<=> \(\dfrac{2.\left(2x-1\right)}{3.2}-\dfrac{3.\left(x+3\right)}{3.2}>\dfrac{1.6}{6}+\dfrac{5x}{6}\)
=> 4x - 2 - 3x - 9 > 6 + 5x
<=> 4x - 3x - 5x > 6 + 9 + 2
<=> -4x > 17
<=> \(\dfrac{-17}{4}\)
Vậy S = { \(\dfrac{-17}{4}\) }
A=\(\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{44.49}\right)\dfrac{1-3-5-7-...-49}{89}\)
Ta có: \(A=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
\(\Leftrightarrow A=\dfrac{1}{5}\cdot\left(\dfrac{5}{4\cdot9}+\dfrac{5}{9\cdot14}+\dfrac{5}{14\cdot19}+...+\dfrac{5}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
\(\Leftrightarrow A=\dfrac{1}{5}\cdot\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{44}-\dfrac{1}{49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
\(\Leftrightarrow A=\dfrac{1}{5}\cdot\left(\dfrac{1}{4}-\dfrac{1}{49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
\(\Leftrightarrow A=\dfrac{1}{5}\cdot\left(\dfrac{49-4}{4\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
\(\Leftrightarrow A=\dfrac{1}{5}\cdot\dfrac{45}{196}\cdot\dfrac{1-3-5-7-...-49}{89}\)
\(\Leftrightarrow A=\dfrac{9}{196}\cdot\dfrac{1-3-5-7-...-49}{89}\)
\(\Leftrightarrow A=\dfrac{9}{196}\cdot\dfrac{-623}{89}=-\dfrac{9}{28}\)