DH

Những câu hỏi liên quan
NA
Xem chi tiết
ND
29 tháng 1 2023 lúc 15:51

\(\dfrac{2n+1+3n-5-4n+5}{n-3}=\dfrac{n+1}{n-3}\)

Bình luận (0)
DL
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
H24
17 tháng 8 2021 lúc 15:53

đáp án là đpcm

 

Bình luận (0)
H24
Xem chi tiết
NM
Xem chi tiết
HH
6 tháng 3 2018 lúc 17:43

ta có \(\dfrac{1}{3^3}< \dfrac{1}{3^3-3}\)

\(\dfrac{1}{4^3}< \dfrac{1}{4^3-4}\)

...............

\(\dfrac{1}{n^3}< \dfrac{1}{n^3-n}\)

=> \(\dfrac{1}{3^3}+\dfrac{1}{4^3}+\dfrac{1}{5^3}+....+\dfrac{1}{n^3}< \dfrac{1}{3^3-3}+\dfrac{1}{4^3-4}+....+\dfrac{1}{n^3-n}\)=>\(B< \dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+....+\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)đặt \(C=\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+....+\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)

C=\(\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+.....+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\)C=\(\dfrac{1}{6}-\dfrac{1}{n\left(n+1\right)}\)

=> C<\(\dfrac{1}{6}\)

\(\dfrac{1}{6}< \dfrac{1}{4}\)

=> C<\(\dfrac{1}{4}\)

ta lại có B<C

=> B<\(\dfrac{1}{4}\) (đpcm)

Bình luận (0)
HH
6 tháng 3 2018 lúc 17:45

mk bị nhầm rồi xin lỗi nha

Bình luận (0)
HH
6 tháng 3 2018 lúc 17:52

chữa lại

C=\(\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+....+\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)

C=\(\dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}+.....+\dfrac{1}{\left(n-1\right)}-\dfrac{1}{n\left(n+1\right)}\right)\)

C=\(\dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{n\left(n+1\right)}\right)\)

C=\(\dfrac{1}{12}-\dfrac{1}{2n\left(n+1\right)}\)

=> C<\(\dfrac{1}{12}\)

mà B<C

=> B<\(\dfrac{1}{12}\) (đpcm)

Bình luận (0)
MA
Xem chi tiết
NL
18 tháng 1 2022 lúc 13:29

\(=\lim\dfrac{1.\dfrac{1-\left(\dfrac{1}{3}\right)^{n+1}}{1-\dfrac{1}{3}}}{1.\dfrac{1-\left(\dfrac{2}{5}\right)^{n+1}}{1-\dfrac{2}{5}}}=\lim\dfrac{9}{10}.\dfrac{1-\left(\dfrac{1}{3}\right)^{n+1}}{1-\left(\dfrac{2}{5}\right)^{n+1}}=\dfrac{9}{10}\)

Bình luận (0)
NM
Xem chi tiết
HN
Xem chi tiết
H24
28 tháng 7 2019 lúc 19:53

\(\frac{a^5}{5}+\frac{a^3}{3}+\frac{7a}{15}\left(n\Rightarrow a\text{ }nha\right)=\frac{a^5}{5}+\frac{a^3}{3}+\frac{7a}{15}=\frac{a^5}{5}+\frac{a^3}{3}+\frac{15a-5a-3a}{15}=\frac{a^5-a}{5}+\frac{a^3-a}{3}+\frac{15a}{15}=\frac{a^5-a}{5}+\frac{a^3-a}{3}+a;a^k-a⋮k\left(a\in Z;1< k\in N\right)\left(fecmat\right)\Rightarrow\left\{{}\begin{matrix}a^5-a⋮5\\a^3-a⋮3\end{matrix}\right.\Rightarrow dpcm\)

Bình luận (0)
H24
28 tháng 7 2019 lúc 20:07

\(\frac{a}{12}+\frac{a^2}{8}+\frac{a^3}{24}\left(n\Rightarrow a\text{ nha}\right)=\frac{a^3+3a^2+2a}{24}=\frac{\left(a+2\right)\left(a+1\right)a}{24}.a=2k\left(k\in N\right)\Rightarrow;\frac{a\left(a+1\right)\left(a+2\right)}{24}=\frac{2k.\left(2k+1\right)\left(2k+2\right)}{24}=\frac{k\left(k+1\right)\left(2k+1\right)}{6}\Leftrightarrow k\left(k+1\right)\left(2k+1\right)⋮6\)

Bình luận (0)
TP
Xem chi tiết
H24
10 tháng 2 2022 lúc 6:46

\(=lim\dfrac{\left(1-\dfrac{1}{3^{n-1}}\right)\left(1-\dfrac{2}{5}\right)}{\left(1-\dfrac{1}{3}\right)\left(1-\left(\dfrac{2}{50}\right)^{n+1}\right)}\\ =lim\dfrac{9}{10}\left(\dfrac{1-\dfrac{1}{3^{n-1}}}{1-\left(\dfrac{-2}{5}\right)^{n+1}}\right)\\ =\dfrac{9}{10}\)

Bình luận (0)