CMR: \(\dfrac{a}{n\left(n+a\right)}\)=\(\dfrac{1}{n}\) - \(\dfrac{1}{n+a}\) (n,a ϵ N*)
Cho a, b, c là độ dài 3 cạnh tam giác. CMR:
1, \(\dfrac{1}{\left(a+b-c\right)^n}+\dfrac{1}{\left(a-b+c\right)^n}+\dfrac{1}{\left(b+c-a\right)^n}\ge\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}\)
2, \(\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}\ge4^n\left[\dfrac{1}{\left(2a+b+c\right)^n}+\dfrac{1}{\left(a+2b+c\right)^n}+\dfrac{1}{\left(a+b+2c\right)^n}\right]\)
Cho \(A=\dfrac{5n+1}{n+1}\left(n\ne-1\right)\). Tìm n ϵ N để A nguyên
$A=\frac{5n+1}{n+1}=\frac{5(n+1)-4}{n+1}=5-\frac{4}{n+1}\in \mathbb{Z}$
$\Leftrightarrow n+1\in Ư(4)=\left\{-4;-2;-1;1;2;4\right\}$
Mà $n\in\mathbb{N}$
$\Rightarrow n\in\left\{0;1;3\right\}$
\(A=\dfrac{5n+1}{n+1}=\dfrac{5\left(n+1\right)-4}{n+1}=\dfrac{5\left(n+1\right)}{n+1}-\dfrac{4}{n+1}=5-\dfrac{4}{n+1}\).ĐK:n≠-1
để \(Anguy\text{ê}n.th\text{ì}4⋮(n+1)\\ \Rightarrow n+1\in\text{Ư}\left(4\right)=\left\{1;2;4\right\}\)
ta có bảng sau :
n+1 | 1 | 2 | 4 |
n | 0 | 1 | 3 |
vậy....
Cho n ϵ N*. Chứng minh:
a) \(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{\left(n-1\right)^2}+\dfrac{1}{n^2}< 2\)
b) \(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-1\right)\)
Câu hỏi của Cường Hoàng - Toán lớp 9 | Học trực tuyến
Áp dụng : \(\dfrac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-\sqrt{n}\right)\)
\(\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n-1}}+...+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{2}}+1>2\left(\sqrt{n+1}-\sqrt{n}\right)+2\left(\sqrt{n}-\sqrt{n-1}\right)+...+2\left(\sqrt{4}-\sqrt{3}\right)+2\left(\sqrt{3}-\sqrt{2}\right)+2\left(\sqrt{2}-1\right).\)
\(=2\left(\sqrt{n+1}-1\right).\)
a,CMR :dãy u(n)=\(\left(1+\dfrac{1}{n}\right)^n\)có giới hạ hữu hạn
b đặt lim(1+\(\dfrac{1}{n}\))^n =e .Tính các giưới hạn sau ; lim\(\left(\dfrac{n+1}{n-1}\right)^{n+2}\)và lim\(\left(\dfrac{n-2}{n+3}\right)^{n+1}\)
1/Cmr các tổng sau không là số nguyên:
a) \(A=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{n}\) (n thuộc N , n lớn hơn hoặc bằng 2)
b) \(B=\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{2n+1}\) (n thuộc N , n lớn hơn hoặc bằng 1)
2.Tính giá trị của biểu thức sau, biết rằng a+b+c=0 :
\(A=\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)\)
3.Cmr nếu \(\left(a^2-bc\right)\left(b-abc\right)=\left(b^2-ac\right)\left(a-abc\right)\) và các số a,b,c,a-b khác 0 thì \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=a+b+c\)
Cho n ϵ N*. Chứng minh:
a) \(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{\left(n-1\right)^2}+\dfrac{1}{n^2}< 2\)
b) \(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-1\right)\)
\(\lim\limits_{n\rightarrow\infty}\dfrac{1}{n}[\left(x+\dfrac{a}{n}\right)+\left(x+\dfrac{2a}{n}\right)+...+\left(x+\dfrac{\left(n-1\right)a}{n}\right)]\)
Bài đã đăng bạn hạn chế không đăng lại nữa nhé.
CMR : \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\) với n thuộc N*
Áp dụng cho : \(A=1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}\) . CMR : 18 < A < 19
@Akai Haruma
Ta có : \(\sqrt{n+1}-\sqrt{n}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n+1}+\sqrt{n}}=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}< \dfrac{1}{\sqrt{n}+\sqrt{n}}=\dfrac{1}{2\sqrt{n}}\) ⇒ \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}\left(1\right)\)
\(\sqrt{n}-\sqrt{n-1}=\dfrac{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n+1}\right)}{\sqrt{n}+\sqrt{n-1}}=\dfrac{1}{\sqrt{n}+\sqrt{n-1}}>\dfrac{1}{\sqrt{n}+\sqrt{n}}=\dfrac{1}{2\sqrt{n}}\) ⇒ \(2\left(\sqrt{n+1}-\sqrt{n}\right)>\dfrac{1}{\sqrt{n}}\left(2\right)\)
Từ \(\left(1;2\right)\text{⇒ }đpcm\)
Dùng quy nạp nha
1. CMR: ∀n thì
a) \(A=10^n+72-1\)⋮81
b) \(B=2002^n-138n-1\)⋮207
2.CMR: ∀n∈N
a) \(1.2+2.3+3.4+...+n\left(n+1\right)=\dfrac{n\left(n+1\right)\left(n+2\right)}{8}\)
b) \(1^3+2^3+3^3+...+n^3=\left(\dfrac{n\left(n+1\right)}{2}\right)^2\)
\(1,\)
\(a,\) Sửa: \(A=10^n+72n-1⋮81\)
Với \(n=1\Leftrightarrow A=10+72-1=81⋮81\)
Giả sử \(n=k\Leftrightarrow A=10^k+72k-1⋮81\)
Với \(n=k+1\Leftrightarrow A=10^{k+1}+72\left(k+1\right)-1\)
\(A=10^k\cdot10+72k+72-1\\ A=10\left(10^k+72k-1\right)-648k+81\\ A=10\left(10^k+72k-1\right)-81\left(8k-1\right)\)
Ta có \(10^k+72k-1⋮81;81\left(8k-1\right)⋮81\)
Theo pp quy nạp
\(\Rightarrow A⋮81\)
\(b,B=2002^n-138n-1⋮207\)
Với \(n=1\Leftrightarrow B=2002-138-1=1863⋮207\)
Giả sử \(n=k\Leftrightarrow B=2002^k-138k-1⋮207\)
Với \(n=k+1\Leftrightarrow B=2002^{k+1}-138\left(k+1\right)-1\)
\(B=2002\cdot2002^k-138k-138-1\\ B=2002\left(2002^k-138k-1\right)+276138k+1863\\ B=2002\left(2002^k-138k-1\right)+207\left(1334k+1\right)\)
Vì \(2002^k-138k-1⋮207;207\left(1334k+1\right)⋮207\)
Nên theo pp quy nạp \(B⋮207,\forall n\)
\(2,\)
\(a,\) Sửa đề: CMR: \(1\cdot2+2\cdot3+...+n\left(n+1\right)=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)
Đặt \(S_n=1\cdot2+2\cdot3+...+n\left(n+1\right)\)
Với \(n=1\Leftrightarrow S_1=1\cdot2=\dfrac{1\cdot2\cdot3}{3}=2\)
Giả sử \(n=k\Leftrightarrow S_k=1\cdot2+2\cdot3+...+k\left(k+1\right)=\dfrac{k\left(k+1\right)\left(k+2\right)}{3}\)
Với \(n=k+1\)
Cần cm \(S_{k+1}=1\cdot2+2\cdot3+...+k\left(k+1\right)+\left(k+1\right)\left(k+2\right)=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)
Thật vậy, ta có:
\(\Leftrightarrow S_{k+1}=S_k+\left(k+1\right)\left(k+2\right)\\ \Leftrightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(k+2\right)}{3}+\left(k+1\right)\left(k+2\right)\\ \Leftrightarrow S_{k+1}=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)
Theo pp quy nạp ta có đpcm
\(b,\) Với \(n=0\Leftrightarrow0^3=\left[\dfrac{0\left(0+1\right)}{2}\right]^2=0\)
Giả sử \(n=k\Leftrightarrow1^3+2^3+...+k^3=\left[\dfrac{k\left(k+1\right)}{2}\right]^2\)
Với \(n=k+1\)
Cần cm \(1^3+2^3+...+k^3+\left(k+1\right)^3=\left[\dfrac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)
Thật vậy, ta có
\(1^3+2^3+...+k^3+\left(k+1\right)^3\\ =\left[\dfrac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3\\ =\dfrac{k^2\left(k+1\right)^2+4\left(k+1\right)^3}{4}=\dfrac{\left(k+1\right)^2\left(k^2+4k+4\right)}{4}\\ =\dfrac{\left(k+1\right)^2\left(k+2\right)^2}{4}=\left[\dfrac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)
Theo pp quy nạp ta được đpcm