Chương I - Căn bậc hai. Căn bậc ba

DN

Cho n ϵ N*. Chứng minh:

a) \(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{\left(n-1\right)^2}+\dfrac{1}{n^2}< 2\)

b) \(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-1\right)\)

HN
14 tháng 6 2017 lúc 10:40

Câu hỏi của Cường Hoàng - Toán lớp 9 | Học trực tuyến

Bình luận (0)
NM
14 tháng 6 2017 lúc 11:54

Áp dụng : \(\dfrac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-\sqrt{n}\right)\)

\(\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n-1}}+...+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{2}}+1>2\left(\sqrt{n+1}-\sqrt{n}\right)+2\left(\sqrt{n}-\sqrt{n-1}\right)+...+2\left(\sqrt{4}-\sqrt{3}\right)+2\left(\sqrt{3}-\sqrt{2}\right)+2\left(\sqrt{2}-1\right).\)

\(=2\left(\sqrt{n+1}-1\right).\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
HD
Xem chi tiết
LM
Xem chi tiết
VQ
Xem chi tiết
NN
Xem chi tiết
NQ
Xem chi tiết
PT
Xem chi tiết
HD
Xem chi tiết
QE
Xem chi tiết