Rút gọn biểu thức
\(3x^n\left(6x^{n-3}+1\right)-2x^n\left(9x^{n-3}-1\right)\)
Rút gọn biểu thức:
\(3x^n\left(6x^{n-3}+1\right)-2x^n\left(9x^{n-3}-1\right)\)
\(5^{n+1}-4.5^n\)
Ta có: \(5^{n+1}-4.5^n=5^n.5-4.5^n=\left(5-4\right)5^n=5^n\)
CHÚC BẠN HỌC TỐT.........
a) 3x\(^n\) (6x\(^{n-3}\)+1) - 2x\(^n\) ( 9x\(^{n-3}\) - 1)
= 18x\(^{n-2}\) + 3x\(^n\) - 18x\(^{n-2}\) + 2x\(^n\)
= 5x\(^n\)
b) 5\(^{n+1}\) - 4.5\(^n\)
= 5\(^n\) . ( 5-4) = 5\(^n\)
thu gọn:
\(3x^n.\left(6x^{n-3}+1\right)-2x^n.\left(9x^{n-3}-1\right)\)
\(3x^n.\left(6x^{n-3}+1\right)-2x^n.\left(9x^{n-3}-1\right)\)
\(=18x^{n+n-3}+3x^n-18x^{n+n-3}+2x^n\)
\(=18x^{2n-3}+3x^n-18^{2n-3}+2x^n\)
\(=3x^n+2x^n=x^n\left(3+2\right)=5x^n\)
rút gọn biểu thức sau
a)\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
b)6x\(^n\left(x^2-1\right)+2x^3\left(3x^{n+1}+1\right)\)
a) Ta có: \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
\(=x^n+x^{n-1}\cdot y-x^{n-1}\cdot y-y\cdot y^{n-1}\)
\(=x^n-y^n\)
a) \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
\(=x^{n-1}x+x^{n-1}y-x^{n-1}y-y^{n-1}y\)
\(=x^n-y^n\)
b) \(6x^n\left(x^2-1\right)+2x^3\left(3x^{n+1}+1\right)\)
\(=6x^nx^2-6x^n+2x^33x^{n+1}+2x^3\)
\(=6x^{n+2}-6x^n+6x^{3+n+1}+2x^3\)
\(=6x^{n+2}-6x^n+6x^{n+4}+2x^3\)
Đề có sai ko vậy bạn ???
\(3x^n\left(6x^{n-3}+1\right)-2x^n\left(9x^{n-3}-1\right)\)
\(3x^n\left(6x^{n-3}+1\right)-2x^n\left(9x^{n-3}-1\right)\)
\(=3x^n\cdot6x^{n-3}+3x^n-2x^n\cdot9x^{n-3}+2x^n\)
\(=18x^{2n-3}+3x^n-18^{2x-3}+2x^n\)
\(=3x^n+2x^n\)
\(=5x^n\)
a. \(3x^n\left(6x^{n-3}+1\right)-2x^n\left(9x^{n-3}-1\right)\))
\(=18x^{2n-3}+3x^n-18x^{2n-3}+2x^n=5x^n\)
thực hiện phép tính
\(3x^n\left(6x^{n-3}+1\right)-2x^n\left(9x^{n-3}-1\right)\))
\(3x^n\left(6x^{n-3}+1\right)-2x^n\left(9x^{n-3}-1\right)\)
\(=18x^{2n-3}+3x^n-18x^{2n-3}+2x^n\)
\(=3x^n+2x^n\)
\(=5x^n\)
\(3x^n\left\{6x^{n-3}+1\right\}-2x^n\left\{9x^{n-3}-1\right\}\)
em can giai luon nhe
Áp dụng CT nhân ba \(sin\left(3x\right)=3sinx-4sin^3x\) để rút gọn biểu thức sau:
\(S=\dfrac{1}{3}sin^3a+\dfrac{1}{9}sin^3\left(3a\right)+\dfrac{1}{27}sin^3\left(9a\right)+.....+\dfrac{1}{3^n}sin^3\left(3^{n-1}a\right)\)
rút gọn biểu thức:
P = \(\left(\frac{x^2-3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
\(ĐKXĐ:x\ne\pm3\)
\(P=\left(\frac{x^2-3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
\(\Leftrightarrow P=\left(\frac{x^2-3x}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)
\(\Leftrightarrow P=\frac{\left(x^2-3x\right)+3\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)
\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x^2+9\right)}:\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x^2+9\right)}\)
\(\Leftrightarrow P=\frac{1}{x+3}:\frac{x-3}{x^2+9}\)
\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x-3\right)}\)