Những câu hỏi liên quan
MH
Xem chi tiết
HP
4 tháng 3 2021 lúc 18:58

a, Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m-1>0\\\Delta'=m^2-4m+4+m-1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>1\\\left(m-\dfrac{3}{2}\right)^2< -\dfrac{3}{4}\end{matrix}\right.\)

\(\Leftrightarrow\) vô nghiệm

Vậy không tồn tại giá trị m thỏa mãn

b, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-1\right)x^2+2\left(m-2\right)x-1< 0\) có nghiệm với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m-1< 0\\\Delta'=m^2-3m+3< 0\end{matrix}\right.\)

\(\Leftrightarrow\) vô nghiệm

Vậy không tồn tại giá trị m thỏa mãn

Bình luận (0)
TL
Xem chi tiết
NT
25 tháng 2 2022 lúc 20:46

Bài 2: 

Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0

hay -2<m<2

Bình luận (0)
HT
Xem chi tiết
NL
8 tháng 3 2021 lúc 23:01

\(\Leftrightarrow\sqrt{-x^2-2x+15}\le x^2+2x+m\)

\(\Leftrightarrow-x^2-2x+15+\sqrt{-x^2-2x+15}-15\le m\)

Đặt \(t=-x^2-2x+15\Rightarrow0\le t\le4\)

\(\Rightarrow t^2+t-15\le m\) với \(t\in\left[0;4\right]\)

\(\Leftrightarrow m\ge\max\limits_{\left[0;4\right]}\left(t^2+t-15\right)\)

Xét \(f\left(t\right)=t^2+t-15\) trên [0;4]

\(-\dfrac{b}{2a}=-\dfrac{1}{2}\notin\left[0;4\right]\) ; \(f\left(0\right)=-15\) ; \(f\left(4\right)=5\)

\(\Rightarrow f\left(t\right)\le5\Rightarrow m\ge5\)

Bình luận (2)
HT
Xem chi tiết
NT
5 tháng 3 2022 lúc 12:52

Trường hợp 1: m=0

Bất phương trình trở thành:

\(-2\cdot\left(0-2\right)x+0-3>0\)

=>4x-3>0

hay x>3/4

=>Nhận trường hợp m=0

Trường hợp 2: m<>0

\(\text{Δ}=\left(2m-4\right)^2-4m\left(m-3\right)\)

\(=4m^2-16m+16-4m^2+12m\)

=-4m+16

Để phương trình có nghiệm thì \(\left\{{}\begin{matrix}-4m+16< 0\\m>0\end{matrix}\right.\Leftrightarrow m>4\)

Vậy: m>4

Bình luận (2)
TT
5 tháng 3 2022 lúc 12:53

undefined

Bình luận (1)
NL
5 tháng 3 2022 lúc 16:55

Với \(m=0\) thỏa mãn

Với \(m\ne0\) BPT vô nghiệm khi: \(mx^2-2\left(m-2\right)x+m-3\le0\) nghiệm đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-2\right)^2-m\left(m-3\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-m+4\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m\ge4\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m để BPT đã cho vô nghiệm

\(\Rightarrow\) BPT đã cho có nghiệm với mọi m

Bình luận (1)
PT
Xem chi tiết
LL
Xem chi tiết
NP
Xem chi tiết
NA
22 tháng 7 2016 lúc 12:17

đặt t = \(\sqrt{-x^2+2x+15}\) ( đk t >= 0 )

xét hàm f(t) = t^2 - 4t -28 

....tự làm ... 

Bình luận (0)
H24
Xem chi tiết
HP
11 tháng 5 2021 lúc 7:49

Đặt \(x^2+4x+3=t\left(t\ge-1\right)\)

\(\left(x^2+4x+3\right)\left(x^2+4x+6\right)\ge m,\forall x\in R\)

\(\Leftrightarrow\left(x^2+4x+3\right)^2+3\left(x^2+4x+3\right)\ge m,\forall x\in R\)

\(\Leftrightarrow m\le f\left(t\right)=t^2+3t,\forall x\in R\)

Yêu cầu bài toán thỏa mãn khi:

\(m\le minf\left(t\right)=-2\)

Bình luận (4)
ZT
Xem chi tiết