cho hình thang ABCD
a)c/m: AB+CD <AC+BD
b)c/m:AC+BD > (AB+BC+CD+DA):2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Hình thang ABCD (AB//CD) có DC=2AB .Gọi M,N,P,Q là trung điểm của các cạnh AB, BC,CD,DA
1) c/m các tứ giác ABPQ, MNPQ là hình bình hành
2) Tìm điều kiện của hình thang ABCDđể MNPQ là hình thoi
3) Gọi E là giao đimể của BD và AP . C/m ba điểm Q,N,E thẳng hàng
câu c:
-chứng minh ABPD là hình bình hành suy ra:Elà trung điểm của AP
-Suy ra QElà đường trung bình tam giác APD , do đó :QE // PD (1)
-Mà QN là đường trung binh hình thang ABCD suy ra: QN//CD (2)
-Từ (1) và (2) suy ra :Q,N,E thẳng hành (theo tiên đề ơ-cơlit)
Cho hình thang ABCD có hai ₫áy AB và CD biết:
ABCD là hình thang ₫áy AB//CD
AB=CD;AD=BC
ôi bạn ơi bạn viết đề thế này là do bạn sao vậy bạn
?1 cho hình 15
a) tìm các tứ giác là hình thang
b) có nhận xét gì về hai góc kề một cạnh bên của hình thang ?
?2 hình thang ABCD có đáy AB,CD
a) cho biết AD//BC .chứng minh rằng AD=BC ,AB=CD
b) cho biết AB=CD chứng minh rằng AD//BC ,AD=BC
?2:
a: Xét ΔBAC và ΔDCA có
\(\widehat{BAC}=\widehat{DCA}\)
AC chung
\(\widehat{BCA}=\widehat{DAC}\)
Do đó: ΔBAC=ΔDCA
SUy ra: BC=DA và AB=CD
b: Gọi O là giao điểm của AC và BD
Xét ΔAOB và ΔCOD có
\(\widehat{OAB}=\widehat{OCD}\)
AB=CD
\(\widehat{OBA}=\widehat{ODC}\)
Do đó: ΔAOB=ΔCOD
Suy ra: OA=OC và OB=OD
Xét ΔAOD và ΔCOB có
OA=OC
\(\widehat{AOD}=\widehat{COB}\)
OD=OB
Do đó: ΔAOD=ΔCOB
Suy ra: AD=CB và \(\widehat{ADO}=\widehat{CBO}\)
=>AD//BC
Cho 4 diem A,B,C,D ko co ba diem nao thang hang .CD cat AB o O . C/m AC+BC+BD+DA/2<AB+CD<AC+BC+BD+DA
Cho hình thang ABCD, có AB//CD và AB<CD. Gọi M là giao điểm của AD và BC. Gọi H, E, F, G lần lượt là trung điểm của AM, BM, AC, BD. C/m HEFG là hình thang.
Cho hình thang ABCD .AB//CD .AB < CD.M ∈ AD,N ∈ BC sao cho \(\dfrac{DM}{DA}\)=\(\dfrac{BN}{BC}\). Lấy I ∈ CD sao cho MI // AC. C/m: IN // BD
Xét ΔADC có
MI//AC(gt)
nên \(\dfrac{DI}{DC}=\dfrac{DM}{DA}\)(Định lí Ta lét)
hay \(\dfrac{DI}{DC}=\dfrac{BN}{BC}\)
Xét ΔBCD có
\(\dfrac{DI}{DC}=\dfrac{BN}{BC}\)(cmt)
nên IN//BD(Định lí Ta lét đảo)
Cho hình thang cân ABCD (AB//CD) a) Phân giác ngoài góc A cắt CD tại E, phân giác ngoài góc B cắt CD tại F. Chứng minh ABFE là hình thang cân. b) Cho AB=6cm, CD=12cm, BC=5cm. Tính diện tích hình ABCD và hình thang ABFE.
a,
ABCD là hình thang cân \(=>\angle\left(CAB\right)=\angle\left(DBA\right)\)
=>2 góc ngoài cũng bằng nhau
=>2 tia phân giác 2 góc ngoài cũng tạo thành các góc bằng nhau
\(=>\angle\left(EAB\right)=\angle\left(FBA\right)\)=>ABFE là hình thang cân
b,từ 2 điểm A,B hạ các đường cao AM,BN
chứng minh được AMNB là h chữ nhật
=>MN=AB=6cm
dễ chứng minh được tam giác ADM=tam giác BCN(ch-cgn)
\(=>DM=CN=\dfrac{1}{2}\left(DC-MN\right)=\dfrac{1}{2}\left(12-6\right)=3cm\)
pytago=>\(BN=\sqrt{BC^2-NC^2}=\sqrt{5^2-3^2}=4cm\)
\(=>SABCD=\dfrac{BN\left(AB+CD\right)}{2}=........\)thay số tính
Cho hình thang ABCD . BỐn điểm M,N,P,Q lan luot la trung điểm của các cạnh AB,BC,CD,Da .Biết diện tích tứ giác là 115 cm2.Tính di6en5 tích hình thang ABCD
Stứ giác là: \(115\times\dfrac{1}{2}=57,5\left(cm^2\right)\)
Bài 1: Cho tứ giác ABCD
a. Có bao nhiêu vectơ khác 0 được thiết lập từ các điểm A, B, C, D.
b. Gọi M, N, P, Q lần lượt là trung điểm AB, BC, CD, DA. CMR: MQ = NP
Bài 2: Cho tứ giác ABCD. CMR: Tứ giác đó là hình bình hành khi và chỉ khi AB = DC
Giúp mình gấp với ạ :((