Những câu hỏi liên quan
AA
Xem chi tiết
BK
Xem chi tiết
BK
25 tháng 11 2021 lúc 20:45

giúp mình gấp với ạ

Bình luận (0)
NM
25 tháng 11 2021 lúc 20:47

\(a,\Rightarrow2x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Rightarrow x\in\left\{-2;1;2;5\right\}\\ b,=\dfrac{2\left(x-1\right)+1}{x-1}=2+\dfrac{1}{x-1}\in Z\\ \Rightarrow x-1\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Rightarrow x\in\left\{0;2\right\}\\ c,\Rightarrow x^2-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow x^2\in\left\{2;4;8\right\}\\ \Rightarrow x^2=4\left(x\in Z\right)\\ \Rightarrow x=\pm2\)

Bình luận (0)
ND
19 tháng 12 2021 lúc 16:00

ggfff

Bình luận (0)
 Khách vãng lai đã xóa
SS
Xem chi tiết
PA
Xem chi tiết
AN
Xem chi tiết
MH
12 tháng 10 2021 lúc 20:04

\(A=\) \(\dfrac{x+2}{x-5}\)

\(=\dfrac{\left(x-5\right)+7}{x-5}\)

\(=1+\dfrac{7}{x-5}\)

để \(\dfrac{7}{x-5}\) ∈Z thì 7⋮x-5

⇒x-5∈\(\left(^+_-1,^+_-7\right)\)

Còn lại thì bạn tự tính nha

Bình luận (0)
07
Xem chi tiết
NT
27 tháng 12 2021 lúc 14:11

a: Để A nguyên thì \(2x-3\in\left\{1;-1;7;-7\right\}\)

hay \(x\in\left\{2;1;5;-2\right\}\)

Bình luận (1)
NT
Xem chi tiết
HH
Xem chi tiết
AH
13 tháng 5 2021 lúc 16:50

Lời giải:

$B=\frac{(x+1)+1}{x+1}=1+\frac{1}{x+1}$

Để $B$ nguyên thì $\frac{1}{x+1}$ nguyên. 

Với $x$ nguyên, để $\frac{1}{x+1}$ nguyên thì $1\vdots x+1$

$\Rightarrow x+1\in\left\{\pm 1\right\}$

$\Rightarrow x\in\left\{0;-2\right\}$

Với $x$ nguyên, để $\frac{5}{2x+7}$ nguyên thì:

$5\vdots 2x+7$

$\Rightarrow 2x+7\in\left\{\pm 1;\pm 5\right\}$

$\Rightarrow x\in\left\{-3;-4;-1;-6\right\}$

Bình luận (0)
TT
13 tháng 5 2021 lúc 16:56

B=\(\dfrac{x+2}{x+1}=1\dfrac{1}{x+1}\)(x khác -1)

=> Để B nguyên thì 1 chia hết cho x+1

=> x+1 ∈Ư(1)={1,-1}

X+11-1
x0-2

Vậy để B nguyên thì x∈{0,-2}

C=\(\dfrac{5}{2x+7}\)(x khác -7/2)

Để C nguyên thì 5 chia hết cho 2x+7

=>2x+7∈Ư(5)={1,-1,5,-5}

2x+71-15-5
x-3-4-1-6

Để C nguyên thì x∈{-3,-4,-1,-6}

 

Bình luận (0)

Để B=\(\dfrac{x+2}{x+1}\) là số nguyên thì x+2 ⋮ x+1

x+2 ⋮ x+1

⇒x+1+1 ⋮ x+1

⇒1 ⋮ x+1

Ta có bảng:

x+1=-1 ➜x=-2 

x+1=1 ➜x=0

Vậy x ∈ {-2;0}

Để C= \(\dfrac{5}{2x+7}\) là số nguyên thì 5 ⋮ 2x+7 

5 ⋮ 2x+7

⇒2x+7 ∈ Ư(5)={-5;-1;1;5}

Ta có bảng giá trị:

2x+7=-5 ➜x=-6

2x+7=-1 ➜x=-4

2x+7=1 ➜x=-3

2x+7=5 ➜x=-1

Vậy x ∈ {-6;-4;-3;-1}

Chúc bạn học tốt!

Bình luận (0)
NM
Xem chi tiết