Những câu hỏi liên quan
LM
Xem chi tiết
LM
4 tháng 3 2022 lúc 22:16

giúp mik nhanh vs khocroikhocroikhocroi plsssssss

 

Bình luận (0)
NT
4 tháng 3 2022 lúc 22:18

a: Gọi a=UCLN(n+1;2n+3)

\(\Leftrightarrow2n+3-2\left(n+1\right)⋮a\)

\(\Leftrightarrow1⋮a\)

=>a=1

=>n+1/2n+3 là phân số tối giản

b: Gọi d=UCLN(2n+5;4n+8)

\(\Leftrightarrow4n+10-4n-8⋮d\)

\(\Leftrightarrow2⋮d\)

mà 2n+5 là số lẻ

nên n=1

=>2n+5/4n+8 là phân số tối giản

Bình luận (1)
VQ
Xem chi tiết
DH
17 tháng 12 2021 lúc 0:06

Đặt \(\left(n+2,2n+3\right)=d\)

Suy ra \(\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}}\Rightarrow2\left(n+2\right)-\left(2n+3\right)=1⋮d\Rightarrow d=1\).

Suy ra đpcm. 

Bình luận (0)
 Khách vãng lai đã xóa
AG
Xem chi tiết
AG
23 tháng 4 2019 lúc 20:00

gọi d=ƯCLN(3n+2;2n+1)

lập luận d = 1

kết luận\(\frac{3n+1}{2n+1}\)tối giản

Bình luận (0)
LC
23 tháng 4 2019 lúc 20:01

Gọi \(\left(3n+2;2n+1\right)=d\)

\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow\frac{3n+2}{2n+1}\)là phân số tối giản với mọi STN n

Bình luận (0)
HS
23 tháng 4 2019 lúc 20:02

Gọi d là ƯCLN\((3n+2,2n+1)\)  \((d\inℕ^∗)\)

Ta có : \((3n+2)⋮d,(2n+1)⋮d\)

\(\Rightarrow\left[2(3n+2)\right]⋮d,\left[3(2n+1)\right]⋮d\)

\(\Rightarrow\left[6n+4\right]⋮d.\left[6n+3\right]⋮d\)

\(\Rightarrow\left[6n+4\right]-\left[6n+3\right]⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d\in\left\{1;-1\right\}\)

Mà \(d\inℕ^∗\)nên d = 1

Vậy : \(\frac{3n+2}{2n+1}\)là phân số tối giản \(\forall n\inℕ\)

Bình luận (0)
VD
Xem chi tiết
NL
20 tháng 3 2023 lúc 12:23

Gọi \(d=ƯC\left(3n+2;6n+5\right)\) với \(d\ge1;d\in N\)

\(\Rightarrow\left\{{}\begin{matrix}3n+2⋮d\\6n+5⋮d\end{matrix}\right.\)

\(\Rightarrow6n+5-2\left(3n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow3n+2\) và \(6n+5\) nguyên tố cùng nhau

Hay P tối giản

Bình luận (0)
ST
10 tháng 4 2023 lúc 21:39

loading...

Bình luận (0)
BM
Xem chi tiết
IY
16 tháng 5 2018 lúc 18:51

a) Gọi d là Ư C L N ( n+1; 2n+3)

ta có: n +1 chia hết cho d => 2.(n+1) chia hết cho d => 2n + 2 chia hết cho d

        2n + 3 chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d 

=> 1 chia hết cho d

\(\Rightarrow\frac{n+1}{2n+3}\) là phân số tối giản

b) Gọi d là Ư C L N ( 2n+1; 3n+2)

ta có: 2n+1 chia hết cho d => 3.(2n+1) chia hết cho d => 6n + 3 chia hết cho d

        3n +2 chia hết cho d => 2.(3n+2) chia hết cho d => 6n + 4 chia hết cho d

=> 6n + 4 - 6n - 3 chia hết cho d

=> 1 chia hết cho d

\(\Rightarrow\frac{2n+1}{3n+2}\) là phân số tối giản

c) Gọi d là Ư C L N ( n; n+1)

ta có: n chia hết cho d

         n + 1 chia hết cho d

=> n +1 - n chia hết cho d

=> 1 chia hết cho d

\(\Rightarrow\frac{n}{n+1}\) là phân số tối giản

Bình luận (0)
LG
26 tháng 6 2018 lúc 22:10

gọi d là ƯCLN của \(\frac{n+1}{2n+3}\)ta có:

\(\text{(2n+3)-(n-1) ⋮d}\)

\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow2n-2n+3-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

vậy \(\frac{n+1}{2n+3}\)là p/s tối giản với mọt số tự nhiên n

Bình luận (0)
DB
Xem chi tiết
TK
Xem chi tiết
NT
12 tháng 3 2023 lúc 23:18

Gọi d=ƯCLN(2n+5;3n+7)

=>6n+15-6n-14 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

Bình luận (0)
NK
26 tháng 12 2024 lúc 20:29

Gọi d=ƯCLN(2n+5;3n+7)

=>6n+15-6n-14 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

Bình luận (0)
CA
Xem chi tiết
DH
14 tháng 5 2021 lúc 16:01

Đặt \(d=\left(n+1,3n+2\right)\).

Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

Bình luận (0)
 Khách vãng lai đã xóa
DH
14 tháng 5 2021 lúc 16:02

Đặt \(d=\left(2n+1,4n+3\right)\).

Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

Bình luận (0)
 Khách vãng lai đã xóa
DH
14 tháng 5 2021 lúc 16:03

Đặt \(d=\left(4n+1,12n+7\right)\).

Suy ra \(\hept{\begin{cases}4n+1⋮d\\12n+7⋮d\end{cases}}\Rightarrow\left(12n+7\right)-3\left(4n+1\right)=4⋮d\Rightarrow4n⋮d\Rightarrow1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

Bình luận (0)
 Khách vãng lai đã xóa
MA
Xem chi tiết
CH
2 tháng 1 2018 lúc 9:00

Giả sử ƯCLN(n3 + 2n ; n4 + 3n2 + 1) = d 

Ta có: \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\)

Do \(n^3+2n⋮d\Rightarrow n\left(n^3+2n\right)⋮d\)

\(\Rightarrow n^4+2n^2⋮3\)

Vậy thì \(n^4+3n^2+1-n^4-2n^2=n^2+1⋮d\)            (1)

Lại có \(n^3+2n=n\left(n^2+1\right)+n⋮d\) nên \(n⋮d\Rightarrow n^2⋮d\)             (2)

Từ (1) và (2) suy ra \(1⋮d\Rightarrow d=1\)

Vậy thì  ƯCLN(n3 + 2n ; n4 + 3n2 + 1) = 1 hay phân số \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản.

Bình luận (0)