Những câu hỏi liên quan
NQ
Xem chi tiết
H24
5 tháng 8 2018 lúc 15:38

Đặt  \(A=x^2-3x\)

\(A=\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{4}\)

\(A=\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\)

Mà  \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow A\ge-\frac{9}{4}\)

Dấu "=" xảy ra khi :  \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

Vậy  \(A_{Min}=-\frac{9}{4}\Leftrightarrow x=\frac{3}{2}\)

Đặt  \(B=-x^2-2x\)

\(-B=x^2+2x\)

\(-B=\left(x^2+2x+1\right)-1\)

\(-B=\left(x+1\right)^2-1\)

Mà  \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow-B\ge-1\Leftrightarrow B\le1\)

Dấu "=" xảy ra khi :  \(x+1=0\Leftrightarrow x=-1\)

Vậy  \(B_{Max}=1\Leftrightarrow x=-1\)

Bình luận (0)
ES
Xem chi tiết
LF
5 tháng 11 2016 lúc 21:05

bài 1:

Ta thấy: \(\left(3x+9\right)^2\ge0\)

\(\Rightarrow2\left(3x+9\right)^2\ge0\)

\(\Rightarrow2\left(3x+9\right)^2+5\ge5\)

Dấu = khi \(3x+9=0\Leftrightarrow3x=-9\Leftrightarrow x=-3\)

Vậy x=-3 thì bt đạt GTNN

Bình luận (0)
H24
6 tháng 11 2016 lúc 17:29

bài 2 :

hạng tử tự do là 5

Bình luận (0)
TQ
Xem chi tiết
YN
30 tháng 6 2021 lúc 21:50

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

Bình luận (0)
 Khách vãng lai đã xóa
YN
30 tháng 6 2021 lúc 21:56

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
YN
30 tháng 6 2021 lúc 22:03

\(5.\)

\(x^2-48x+65\)

\(=\left(x-24\right)^2\ge0\)với \(\forall x\)

\(\left(x-24\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow\left(x-24\right)^2-511\ge-511\)với \(\forall x\)

Vậy \(Max=-511\)khi \(x=24\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
Xem chi tiết
DT
23 tháng 11 2023 lúc 12:05

\(\dfrac{3x^2+6x+15}{x^2+2x+3}=\dfrac{3\left(x^2+2x+3\right)+6}{x^2+2x+3}\\ =3+\dfrac{6}{x ^2+2x+3}\)

Nhận thấy : \(x^2+2x+3=\left(x+1\right)^2+2\ge2\forall x\)

\(=>\dfrac{6}{x^2+2x+3}\le\dfrac{6}{2}=3\)

\(=>3+\dfrac{6}{x^2+2x+3}\le3+3=6\\ =>\dfrac{3x^2+6x+15}{x^2+2x+3}\le6\)

Dấu = xảy ra khi : x+1=0 hay x=-1

Vậy GTLN của đa thức là : 6 tại x = -1

Bình luận (0)
TD
Xem chi tiết
PT
13 tháng 1 2015 lúc 21:31

Ta sử dụng hằng đẳng thức thứ ba , ta có: \(\left(x^2-3x-1\right)\left(x^2-3x+1\right)=\left[\left(x^2-3x\right)-1\right]\left[\left(x^2-3x\right)+1\right]\)

\(=\left(x^2-3x\right)^2-1\) vì \(\left(x^2-3x\right)^2\ge0\Rightarrow\left(x^2-3x\right)^2-1\ge-1\)

Vậy \(\left(x^2-3x-1\right)\left(x^2-3x+1\right)_{min}=-1\) tại \(x=3\).

Bình luận (0)
BK
Xem chi tiết
AH
16 tháng 8 2021 lúc 18:43

Lời giải:

Ta có:

$x^2-3x+11=(x-\frac{3}{2})^2+\frac{35}{4}\geq \frac{35]{4}$

$\Rightarrow \frac{31}{x^2-3x+11}\leq 31:\frac{35}{4}=\frac{124}{35}$

$\Rightarrow \frac{31}{x^2-3x+11}+15\leq \frac{649}{35}$

Vậy gtln của biểu thức là $\frac{649}{35}$ khi $x=\frac{3}{2}$

Bình luận (0)
DM
Xem chi tiết
TN
11 tháng 7 2016 lúc 11:57

Cho x2_60x+900=0

Suy ra:x2_2.x.30+302=0

(x-30)2=0

suy ra x-30=0

vậy x=30

Bình luận (0)
H24
Xem chi tiết
PT
14 tháng 7 2018 lúc 11:58

\(A=3x^2-x+2=3x^2-x+\frac{1}{12}-\frac{1}{12}+2=3\left(x^2-\frac{x}{3}+\frac{1}{36}\right)+\frac{23}{12}\)

\(A=3\left(x-\frac{1}{6}\right)^2+\frac{23}{12}\ge\frac{23}{12}\)

Vậy giá trị nhỏ nhất của A là \(\frac{23}{12}\Leftrightarrow x=\frac{1}{6}\)

Bình luận (0)
YT
14 tháng 7 2018 lúc 12:02

\(A=3x^2-x+2=3\left(x^2-\frac{1}{3}x+\frac{2}{3}\right)\)

\(=3\left(x^2-2\frac{1}{6}x+\frac{1}{36}+\frac{23}{36}\right)\)

\(=3\left(x-\frac{1}{6}\right)^2+\frac{23}{12}\ge\frac{23}{12}\)

VẬY GTNN CỦA A LÀ \(\frac{23}{12}\)KHI X\(=\)\(\frac{1}{6}\)

NẾU CÓ SAI BN THÔNG CẢM NHA

Bình luận (0)