Những câu hỏi liên quan
6C
Xem chi tiết
NM
9 tháng 10 2021 lúc 9:27

\(a,ĐK:x\ge3\\ PT\Leftrightarrow x-3=5\Leftrightarrow x=8\left(tm\right)\\ b,ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow2x-1=3\Leftrightarrow x=2\left(tm\right)\\ c,Vì.\sqrt{1-x}\ge0>-1.nên.pt.vô.nghiệm\\ d,PT\Leftrightarrow\left|x-1\right|=1\Leftrightarrow\left[{}\begin{matrix}x-1=1\\1-x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

Bình luận (0)
KL
9 tháng 10 2021 lúc 9:33

a) \(\sqrt{x-3}=5\) (1)

ĐKXĐ: \(x\ge3\)

\(\left(1\right)\Leftrightarrow x-3=25\)

\(\Leftrightarrow x=28\) (nhận)

Vậy \(x=28\)

b) \(\sqrt{2x-1}=\sqrt{3}\)   (2)

ĐKXĐ: \(x\ge\dfrac{1}{2}\)

\(\left(2\right)\Leftrightarrow2x-1=3\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\) (nhận)

Vậy \(x=2\)

c) \(\sqrt{1-x}=-1\)

Không tìm được \(x\)\(\sqrt{1-x}\ge0\) (với mọi \(x\le1\))

d) \(\sqrt{\left(x-1\right)^2}=1\)   (3)

ĐKXĐ: Với mọi \(x\in R\)

\(\left(3\right)\Leftrightarrow\left|x-1\right|=1\)

\(\Leftrightarrow x-1=1\) (khi \(x\ge1\)) hoặc \(1-x=1\) (khi \(x< 1\))

* \(x-1=1\)

\(\Leftrightarrow x=2\) (nhận)

* \(1-x=1\)

\(\Leftrightarrow x=0\) (nhận)

Vậy \(x=0;x=2\)

Bình luận (0)
H24
Xem chi tiết
H24
26 tháng 6 2021 lúc 16:14

`a)sqrt{x^2-2x+1}=2`

`<=>sqrt{(x-1)^2}=2`

`<=>|x-1|=2`

`**x-1=2<=>x=3`

`**x-1=-1<=>x=-1`.

Vậy `S={3,-1}`

`b)sqrt{x^2-1}=x`

Điều kiện:\(\begin{cases}x^2-1 \ge 0\\x \ge 0\\\end{cases}\)

`<=>` \(\begin{cases}x^2 \ge 1\\x \ge 0\\\end{cases}\)

`<=>x>=1`

`pt<=>x^2-1=x^2`

`<=>-1=0` vô lý

Vậy pt vô nghiệm

`c)sqrt{4x-20}+3sqrt{(x-5)/9}-1/3sqrt{9x-45}=4(x>=5)`

`pt<=>sqrt{4(x-5)}+sqrt{9*(x-5)/9}-sqrt{(9x-45)*1/9}=4`

`<=>2sqrt{x-5}+sqrt{x-5}-sqrt{x-5}=4`

`<=>2sqrt{x-5}=4`

`<=>sqrt{x-5}=2`

`<=>x-5=4`

`<=>x=9(tmđk)`

Vậy `S={9}.`

`d)x-5sqrt{x-2}=-2(x>=2)`

`<=>x-2-5sqrt{x-2}+4=0`

Đặt `a=sqrt{x-2}`

`pt<=>a^2-5a+4=0`

`<=>a_1=1,a_2=4`

`<=>sqrt{x-2}=1,sqrt{x-2}=4`

`<=>x_1=3,x_2=18`,

`e)2x-3sqrt{2x-1}-5=0`

`<=>2x-1-3sqrt{2x-1}-4=0`

Đặt `a=sqrt{2x-1}(a>=0)`

`pt<=>a^2-3a-4=0`

`a-b+c=0`

`<=>a_1=-1(l),a_2=4(tm)`

`<=>sqrt{2x-1}=4`

`<=>2x-1=16`

`<=>x=17/2(tm)`

Vậy `S={17/2}`

Bình luận (2)
AH
26 tháng 6 2021 lúc 16:15

d.

ĐKXĐ: $x\geq 2$. Đặt $\sqrt{x-2}=a(a\geq 0)$ thì pt trở thành:

$a^2+2-5a=-2$

$\Leftrightarrow a^2-5a+4=0$

$\Leftrightarrow (a-1)(a-4)=0$

$\Rightarrow a=1$ hoặc $a=4$

$\Leftrightarrow \sqrt{x-2}=1$ hoặc $\sqrt{x-2}=4$

$\Leftrightarrow x=3$ hoặc $x=18$ (đều thỏa mãn)

e. ĐKXĐ: $x\geq \frac{1}{2}$

Đặt $\sqrt{2x-1}=a(a\geq 0)$ thì pt trở thành:

$a^2+1-3a-5=0$

$\Leftrightarrow a^2-3a-4=0$

$\Leftrightarrow (a+1)(a-4)=0$

Vì $a\geq 0$ nên $a=4$

$\Leftrightarrow \sqrt{2x-1}=4$

$\Leftrightarrow x=\frac{17}{2}$

Bình luận (0)
AH
26 tháng 6 2021 lúc 16:12

a.

$\sqrt{x^2-2x+1}=2$

$\Leftrightarrow \sqrt{(x-1)^2}=2$

$\Leftrightarrow |x-1|=2$

$\Rightarrow x-1=\pm 2$

$\Leftrightarrow x=3$ hoặc $x=-1$ (đều thỏa mãn)

b. ĐKXĐ: $x\geq 1$ hoặc $x\leq -1$

PT \(\Rightarrow \left\{\begin{matrix} x\geq 0\\ x^2-1=x^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ 1=0\end{matrix}\right.\) (vô lý)

Vậy pt vô nghiệm

c. ĐKXĐ: $x\geq 5$

PT $\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=4$

$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$

$\Leftrightarrow 2\sqrt{x-5}=4$

$\Leftrightarrow \sqrt{x-5}=2$

$\Leftrightarrow x=2^2+5=9$ (thỏa mãn)

 

Bình luận (2)
AQ
Xem chi tiết
MH
4 tháng 10 2021 lúc 19:58

c) \(\sqrt{\left(x-2\right)^2}=10\)

\(x-2=10\)

\(x=12\)

d) \(\sqrt{9x^2-6x+1}=15\)

\(\sqrt{\left(3x\right)^2-2.3x.1+1^2}=15\)

\(\sqrt{\left(3x-1\right)^2}=15\)

\(3x-1=15\)

\(3x=16\)

\(x=\dfrac{16}{3}\)

Bình luận (0)
LL
4 tháng 10 2021 lúc 19:59

a) \(đk:x\ge0\)

\(pt\Leftrightarrow3\sqrt{2x}+4\sqrt{2x}-3\sqrt{2x}=12\)

\(\Leftrightarrow4\sqrt{2x}=12\Leftrightarrow\sqrt{2x}=3\Leftrightarrow2x=9\Leftrightarrow x=\dfrac{9}{2}\left(tm\right)\)

b) \(đk:x\ge-2\)

\(pt\Leftrightarrow3\sqrt{x+2}+12\sqrt{x+2}-2\sqrt{x+2}=26\)

\(\Leftrightarrow13\sqrt{x+2}=26\)

\(\Leftrightarrow\sqrt{x+2}=2\Leftrightarrow x+2=4\Leftrightarrow x=2\left(tm\right)\)

c) \(pt\Leftrightarrow\left|x-2\right|=10\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=10\\x-2=-10\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-8\end{matrix}\right.\)

d) \(pt\Leftrightarrow\sqrt{\left(3x-1\right)^2}=15\)

\(\Leftrightarrow\left|3x-1\right|=15\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=15\\3x-1=-15\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{16}{3}\\x=-\dfrac{14}{3}\end{matrix}\right.\)

e) \(đk:x\ge\dfrac{8}{3}\)

\(pt\Leftrightarrow3x+4=9x^2-48x+64\)

\(\Leftrightarrow9x^2-51x+60=0\)

\(\Leftrightarrow3\left(x-4\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)

Bình luận (0)
HP
4 tháng 10 2021 lúc 20:15

a. \(\sqrt{18x}+2\sqrt{8x}-3\sqrt{2x}=12\)      ĐK: \(x\ge0\)

<=> \(\sqrt{9.2x}+2\sqrt{4.2x}-3\sqrt{2x}=12\)

<=> \(3\sqrt{2x}+4\sqrt{2x}-3\sqrt{2x}=12\)

<=> \(\sqrt{2x}\left(3+4-3\right)=12\)

<=> \(4\sqrt{2x}=12\)

<=> \(\sqrt{2x}=12:4\)

<=> \(\sqrt{2x}=3\)

<=> 2x = 32

<=> 2x = 9

<=> \(x=\dfrac{9}{2}\) (TM)

b. \(\sqrt{9x+18}+2\sqrt{36x+72}-\sqrt{4x+8}=26\)          ĐK: \(x\ge-2\)

<=> \(\sqrt{9\left(x+2\right)}+2\sqrt{36\left(x+2\right)}-\sqrt{4\left(x+2\right)}=26\)

<=> \(3\sqrt{x+2}+72\sqrt{x+2}-2\sqrt{x+2}=26\)

<=> \(\sqrt{x+2}\left(3+72-2\right)=26\)

<=> \(73\sqrt{x+2}=26\)

<=> \(\sqrt{x+2}=\dfrac{26}{73}\)

<=> x + 2 = \(\left(\dfrac{26}{73}\right)^2\)

<=> x + 2 = \(\dfrac{676}{5329}\)

<=> \(x=\dfrac{676}{5329}-2\)

<=> \(x=-1,873146932\) (TM)

c. \(\sqrt{\left(x-2\right)^2}=10\)

<=> \(\left|x-2\right|=10\)

<=> \(\left[{}\begin{matrix}x-2=10\left(x\ge2\right)\\x-2=-10\left(x< 2\right)\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=12\left(TM\right)\\x=-8\left(TM\right)\end{matrix}\right.\)

d. \(\sqrt{9x^2-6x+1}=15\)

<=> \(\sqrt{\left(3x-1\right)^2}=15\)

<=> \(\left|3x-1\right|=15\)

<=> \(\left[{}\begin{matrix}3x-1=15\left(x\ge\dfrac{16}{3}\right)\\3x-1=-15\left(x< \dfrac{16}{3}\right)\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=\dfrac{16}{3}\left(TM\right)\\x=\dfrac{-14}{3}\left(TM\right)\end{matrix}\right.\)

e. \(\sqrt{3x+4}=3x-8\)        ĐK: \(x\ge\dfrac{-4}{3}\)

<=> 3x + 4 = (3x - 8)2

<=> 3x + 4 = 9x2 - 48x + 64

<=> 9x2 - 3x - 48x + 64 - 4 = 0

<=> 9x2 - 51x + 60 = 0

<=> 9x2 - 36x - 15x + 60 = 0

<=> 9x(x - 4) - 15(x - 4) = 0

<=> (9x - 15)(x - 4) = 0

<=> \(\left[{}\begin{matrix}9x-15=0\\x-4=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=\dfrac{15}{9}\left(TM\right)\\x=4\left(TM\right)\end{matrix}\right.\)

Bình luận (0)
CP
Xem chi tiết
NT
26 tháng 10 2021 lúc 20:37

a: \(\Leftrightarrow\left|2x-3\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Bình luận (0)
H24
26 tháng 10 2021 lúc 20:39

a, \(\sqrt{\left(2x-3\right)^2}=7\\ \Rightarrow\left|2x-3\right|=7\\ \Rightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

c, \(\sqrt{x^2-9}-3\sqrt{x-3}=0\\ \Rightarrow\sqrt{x-3}\sqrt{x+3}-3\sqrt{x-3}=0\\ \Rightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x+3=9\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

 

Bình luận (0)
3P
Xem chi tiết
H24
21 tháng 12 2023 lúc 16:26

Bài 3:
a) \(\sqrt{3x-2}=4\)
\(\sqrt{3x-2}=\sqrt{4^2}\)
\(3x-2=4^2=16\)
    \(3x=16+2=18\)
    \(x=18:3=6\)
    Vậy \(x=6\)
b)\(\sqrt{4x^2+4x+1}-11=5\)
\(\sqrt{\left(2x\right)^2+2\left(2x\right)\cdot1+1^2}-11=5\)
\(\sqrt{\left(2x+1\right)^2}-11=5\)
TH1:
\(\left(2x+1\right)-11=5\)
    \(2x+1=5+11=16\)
    \(2x=16-1=15\)
    \(x=15:2=7,5\)
TH2:
\(\left(2x+1\right)-11=-5\)
    \(2x-1=-5+11=6\)
    \(2x=6+1=7\)
    \(x=7:2=3,5\)
    Vậy \(x=\left\{7,5;3,5\right\}\) 
    (Câu này mình không chắc chắn lắm)   
    (Học sinh lớp 6 đang làm bài này)    

Bình luận (0)
NT
21 tháng 12 2023 lúc 17:52

Bài 4:

a: \(C=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-\sqrt{x}+x+\sqrt{x}}{\sqrt{x}}=\dfrac{2x}{\sqrt{x}}=2\sqrt{x}\)

b: C-6<0

=>C<6

=>\(2\sqrt{x}< 6\)

=>\(\sqrt{x}< 3\)

=>0<=x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< x< 9\\x\ne1\end{matrix}\right.\)

Bình luận (0)
TH
21 tháng 12 2023 lúc 18:12

Bài 3

a)\(\sqrt{3x-2}=4\Leftrightarrow3x-2=16\Leftrightarrow3x=18\Leftrightarrow x=6\)

Vậy PT có nghiệm x=6

b)\(\sqrt{4x^2+4x+1}-11=5\Leftrightarrow\sqrt{\left(2x+1\right)^2}=16\Leftrightarrow2x+1=16hoặc2x+1=-16\)

+)TH1: \(2x+1=16\Leftrightarrow x=\dfrac{15}{2}\Leftrightarrow x=7,5\)

+)TH2:\(2x+1=-16\Leftrightarrow x=\dfrac{17}{2}\Leftrightarrow x=8,5\)

Bài 4

a)\(C=1\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\Leftrightarrow C=\dfrac{x-1}{\sqrt{x}}\left(\dfrac{x-\sqrt{x}+x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\Leftrightarrow C=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}\dfrac{2x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\Leftrightarrow C=\dfrac{2x}{\sqrt{x}}\Leftrightarrow C=2\sqrt{x}\)

\(Vậy\) \(C=2\sqrt{x}\)

Bình luận (0)
QE
Xem chi tiết
H24
26 tháng 6 2021 lúc 9:27

`a)sqrt{9x^2}=6`

`<=>|3x|=6`

`<=>|x|=2`

`<=>x=+-2`

`b)sqrt{(x-2)^2}=5`

`<=>|x-2|=5`

`**x-2=5`

`<=>x=7`

`**x-2=-5`

`<=>x=-3`

`c)sqrt{x^2-6x+9}=3`

`<=>\sqrt{(x-3)^2}=3`

`<=>|x-3|=3`

`**x-3=3`

`<=>x=6`

`**x-3=-3`

`<=>x=0`

`d)sqrt{x^2+4x+4}-2x=3`

`<=>sqrt{(x+2)^2}=3+2x`

`<=>|x+2|=2x+3(x>=-3/2)`

`**x+2=2x+3`

`<=>x=-1(tm)`

`**x+2=-2x-3`

`<=>3x=-5`

`<=>x=-5/3(l)`

Sử dụng công thức:`sqrtA^2=|A|`

Bình luận (0)
NL
26 tháng 6 2021 lúc 9:28

ĐKXĐ : \(x\in R\)

a, \(\sqrt{9x^2}=\left|3x\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy ..

b, \(\sqrt{\left(x-2\right)^2}=\left|x-2\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

Vậy ...

c, \(\sqrt{x^2-6x+9}=\sqrt{\left(x-3\right)^2}=\left|x-3\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=3\\x-3=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=0\end{matrix}\right.\)

Vậy ..

d, \(\sqrt{x^2+4x+4}-2x=\sqrt{\left(x+2\right)^2}-2x=\left|x+2\right|-2x=3\)

\(\Leftrightarrow\left|x+2\right|=2x+3\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+2=2x+3\\x+2=-2x-3\end{matrix}\right.\\2x+3\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{3}{2}\\\left[{}\begin{matrix}x=-1\left(TM\right)\\x=-\dfrac{5}{3}\left(L\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy ..

Bình luận (0)
LT
Xem chi tiết
AT
12 tháng 7 2021 lúc 15:59

a) \(\sqrt{x}< \sqrt{3}\Rightarrow x< 3\Rightarrow0\le x< 3\)

b) \(\sqrt{3x}< 6\Rightarrow3x< 36\Rightarrow x< 12\Rightarrow0\le x< 12\)

c) \(\dfrac{1}{2}\sqrt{5x}< 10\Rightarrow\sqrt{5x}< 20\Rightarrow5x< 400\Rightarrow x< 80\Rightarrow0\le x< 80\)

Bình luận (0)
NT
12 tháng 7 2021 lúc 23:56

a) \(0\le x< 3\)

b) \(0\le x< 12\)

Bình luận (0)
NT
Xem chi tiết
H24
26 tháng 11 2021 lúc 21:37

a, ĐKXĐ:\(x\ge1\)

\(\sqrt{x-1}=3\\ \Rightarrow x-1=9\\ \Rightarrow x=10\)

\(b,x^2-64=0\\ \Rightarrow\left(x-8\right)\left(x+8\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\\ c,x^2+16=25\\ \Rightarrow x^2=9\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\\ d,ĐKXĐ:x\ge0\\ \left|\sqrt{x}-3\right|+3=9\\ \Rightarrow\left|\sqrt{x}-3\right|=6\\ \Rightarrow\left[{}\begin{matrix}\sqrt{x}-3=-6\\x-3=6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\sqrt{x}=-3\left(vô.lí\right)\\x=9\left(tm\right)\end{matrix}\right.\)

Bình luận (0)
1N
Xem chi tiết
H9
25 tháng 7 2023 lúc 12:46

Bài 2:

a) \(2\sqrt{125}+\dfrac{3}{2}\sqrt{80}-\sqrt{180}-\dfrac{2}{7}\sqrt{245}\)

\(=2\sqrt{5^2\cdot5}+\dfrac{3}{2}\sqrt{4^2\cdot5}-\sqrt{6^2\cdot5}-\dfrac{2}{7}\sqrt{7^2\cdot5}\)

\(=10\sqrt{5}+\dfrac{3\cdot4}{2}\sqrt{5}-6\sqrt{5}-\dfrac{2\cdot7}{7}\sqrt{5}\)

\(=10\sqrt{5}+6\sqrt{6}-6\sqrt{5}-2\sqrt{5}\)

\(=8\sqrt{5}\)

b) \(\sqrt{11-4\sqrt{7}}-\sqrt{16+6\sqrt{7}}\)

\(=\sqrt{\left(\sqrt{7}\right)^2-2\cdot2\cdot\sqrt{7}+2^2}-\sqrt{\left(\sqrt{7}\right)^2+2\cdot3\cdot\sqrt{7}+3^2}\)

\(=\sqrt{\left(\sqrt{7}-2\right)^2}-\sqrt{\left(\sqrt{7}+3\right)^2}\)

\(=\sqrt{7}-2-\sqrt{7}-3\)

\(=-5\)

Bình luận (0)
GD

\(2a,\\ 2\sqrt{125}+\dfrac{3}{2}.\sqrt{80}-\sqrt{180}-\dfrac{2}{7}\sqrt{245}\\ =2\sqrt{5^2.5}+\dfrac{3}{2}.\sqrt{4^2.5}-\sqrt{6^2.5}-\dfrac{2}{7}.\sqrt{7^2.5}\\ =2.5.\sqrt{5}+\dfrac{3}{2}.4.\sqrt{5}-6\sqrt{5}-\dfrac{2}{7}.7\sqrt{5}\\ =10\sqrt{5}+6\sqrt{5}-6\sqrt{5}-2\sqrt{5}=8\sqrt{5}\)

Bình luận (0)
NT
25 tháng 7 2023 lúc 12:47

3: 

a: =>|x-1|=4

=>x-1=4 hoặc x-1=-4

=>x=-3 hoặc x=5

b: =>|6x-5|=4

=>6x-5=4 hoặc 6x-5=-4

=>6x=1 hoặc 6x=9

=>x=1/6 hoặc x=3/2

Bình luận (0)
SO
Xem chi tiết
H24
10 tháng 8 2021 lúc 9:54

Làm a, c là tiêu biểu thôi, bài b đơn giản.

a) \(\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=\sqrt{x-1}-1\)

ĐKXĐ: $x\ge 1.$ Do $VT\ge 0 \Rightarrow VT\ge 0 \to x\ge 2.$

Ta có \(VT=\sqrt{\left[\sqrt{x-1}-1\right]^2}=\left|\sqrt{x-1}-1\right|=VP\) (vì \(\sqrt{x-1}-1=VP\ge0.\))

Vậy phương trình có vô số nghiệm.

c) Ta có:

\(\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}=2\)

ĐKXĐ: $x\ge 1.$

Ta có: \(VT=\sqrt{\left(\sqrt{x-1}+1\right)^2}=\left|\sqrt{x-1}+1\right|=\sqrt{x-1}+1.\)

(vì $\sqrt{x-1}+1>0\forall x\ge 1.$)

Ta có: \(\sqrt{x-1}+1=2\Rightarrow x=2.\) (thỏa mãn)

Bình luận (0)
NT
10 tháng 8 2021 lúc 13:38

b: Ta có: \(\sqrt{36x^2-12x+1}=5\)

\(\Leftrightarrow\left|6x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}6x-1=5\\6x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}6x=6\\6x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Bình luận (0)