Những câu hỏi liên quan
29
Xem chi tiết
NL
2 tháng 1 2024 lúc 17:34

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{x^3-x^2+2x-2}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{x^2\left(x-1\right)+2\left(x-1\right)}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x^2+2\right)}{x-1}=\lim\limits_{x\rightarrow1}\left(x^2+2\right)=3\)

\(f\left(1\right)=3.1+m=m+3\)

Hàm số liên tục tại \(x_0=1\) khi và chỉ khi \(\lim\limits_{x\rightarrow1}f\left(x\right)=f\left(1\right)\)

\(\Rightarrow m+3=3\Rightarrow m=0\)

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 10 2018 lúc 3:44

Giải bài 1 trang 140 sgk Đại Số 11 | Để học tốt Toán 11

Bình luận (0)
WY
Xem chi tiết
NA
2 tháng 8 2016 lúc 12:17

Hỏi đáp Toán

Bình luận (0)
H24
Xem chi tiết
NT
21 tháng 10 2023 lúc 20:58

a: \(f\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^2+\dfrac{1}{2}-2=\dfrac{1}{4}+\dfrac{1}{2}-2=\dfrac{3}{8}-2=\dfrac{3-16}{8}=-\dfrac{13}{8}\)

b: \(f\left(\sqrt{3}\right)=\dfrac{2\sqrt{3}}{\left(\sqrt{3}\right)^2+1}=\dfrac{2\sqrt{3}}{4}=\dfrac{\sqrt{3}}{2}\)

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 1 2017 lúc 8:33

Đáp án A

(1) Nếu hàm số f(x) có đạo hàm tại điểm x = x 0 thì f(x) liên tục tại điểm đó. Đây là mệnh đề đúng.

(2) Nếu hàm số f (x) liên tục tại điểm x = x 0  thì f(x) có đạo hàm tại điểm đó.

Phản ví dụ

Lấy hàm f ( x ) = x  ta có D= R nên hàm số f(x) liên tục trên R.

Nhưng ta có  l i m x → 0 + f ( x ) - f ( 0 ) x - 0 = l i m x → 0 + x - 0 x - 0 = l i m x → 0 + x - 0 x - 0 = 1 l i m x → 0 - f ( x ) - f ( 0 ) x - 0 = l i m x → 0 - x - 0 x - 0 = l i m x → 0 - - x - 0 x - 0 = - 1

Nên hàm số không có đạo hàm tại x = 0.

Vậy mệnh đề (2) là mệnh đề sai.

(3) Nếu f(x) gián đoạn tại  x = x 0  thì chắc chắn f(x) không có đạo hàm tại điểm đó.

Vì (1) là mệnh đề đúng nên ta có f(x)  không liên tục tại  x = x 0  thì f(x) không có đạo hàm tại điểm đó.

Vậy (3) là mệnh đề đúng.

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 2 2018 lúc 7:43

+) (1) Nếu hàm số f(x) có đạo hàm tại điểm Xét ba mệnh đề sau:

(1) Nếu hàm số f(x) có đạo hàm tại điểm  x   =   x 0  thì f(x) liên tục tại điểm đó.

(2) Nếu hàm số f(x) liên tục tại điểm  x   =   x 0  thì f(x) có đạo hàm tại điểm đó.

(3) Nếu f(x) gián đoạn tại  x   =   x 0 thì chắc chắn f(x) không có đạo hàm tại điểm đó.

- Trong ba câu trên: thì f(x) liên tục tại điểm đó. Đây là mệnh đề đúng.

+) (2) Nếu hàm số f(x) liên tục tại điểm  x   =   x 0  thì f(x) có đạo hàm tại điểm đó.Đây là mệnh đề sai.

Phản ví dụ:

- Lấy hàm f(x) = |x| ta có D = R nên hàm số f(x) liên tục trên R

- Nhưng ta có

Đề kiểm tra 15 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Nên hàm số không có đạo hàm tại x = 0.

- Vậy mệnh đề (2) là mệnh đề sai.

+) (3) Nếu f(x) gián đoạn tại  x   =   x 0  thì chắc chắn f(x) không có đạo hàm tại điểm đó.

- Vậy (3) là mệnh đề đúng.Vì (1) là mệnh đề đúng nên ta có f(x) không liên tục tại  x   =   x 0  thì f(x) không có đạo hàm tại điểm đó.

- Vậy (3) là mệnh đề đúng.

Chọn A. 

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 5 2019 lúc 8:57

+) (1) Nếu hàm số f(x) có đạo hàm tại điểm Xét ba mệnh đề sau:

(1) Nếu hàm số f(x) có đạo hàm tại điểm  x   =   x 0  thì f(x) liên tục tại điểm đó.

(2) Nếu hàm số f(x) liên tục tại điểm  x   =   x 0  thì f(x) có đạo hàm tại điểm đó.

(3) Nếu f(x) gián đoạn tại  x   =   x 0 thì chắc chắn f(x) không có đạo hàm tại điểm đó.

- Trong ba câu trên: thì f(x) liên tục tại điểm đó. Đây là mệnh đề đúng.

+) (2) Nếu hàm số f(x) liên tục tại điểm  x   =   x 0  thì f(x) có đạo hàm tại điểm đó.Đây là mệnh đề sai.

Phản ví dụ:

- Lấy hàm f(x) = |x| ta có D = R nên hàm số f(x) liên tục trên R

- Nhưng ta có

Đề kiểm tra 15 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Nên hàm số không có đạo hàm tại x = 0.

- Vậy mệnh đề (2) là mệnh đề sai.

+) (3) Nếu f(x) gián đoạn tại  x   =   x 0  thì chắc chắn f(x) không có đạo hàm tại điểm đó.

- Vậy (3) là mệnh đề đúng.Vì (1) là mệnh đề đúng nên ta có f(x) không liên tục tại  x   =   x 0  thì f(x) không có đạo hàm tại điểm đó.

- Vậy (3) là mệnh đề đúng.

Chọn A.  

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 4 2019 lúc 10:28

(1) Nếu hàm số f(x) có đạo hàm tại điểm  x   =   x 0  thì f(x) liên tục tại điểm đó. Đây là mệnh đề đúng.

(2) Nếu hàm số f(x) liên tục tại điểm  x   =   x 0  thì f(x) có đạo hàm tại điểm đó. Đây là mệnh đề sai.

- Ví dụ: Lấy hàm f(x) = |x| ta có tập xác định D = R .

   +)Với mọi  x 0  ≠ 0 thì Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

   +)Lại có:

   Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

   → Nên hàm số f(x) liên tục trên R.

   +) Nhưng ta có:

   Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

   → Nên hàm số không có đạo hàm tại x = 0.

   → Vậy mệnh đề (2) là mệnh đề sai.

(3) Nếu f(x) gián đoạn tại  x   =   x 0  thì chắc chắn f(x) không có đạo hàm tại điểm đó.

   - Vì (1) là mệnh đề đúng nên ta suy ra : Nếu f(x) không liên tục tại  x   =   x 0  thì f(x) không có đạo hàm tại điểm đó.

   - Vậy (3) là mệnh đề đúng.

Chọn A. 

Bình luận (0)
H24
Xem chi tiết
NH
15 tháng 8 2016 lúc 16:49

Hỏi đáp Toán

Bình luận (0)