Cho pt x²+2x-8=0 gọi x1;x2 là hai nghiệm của pt. Không giải pt mà tính. M=x1(1–x2)+x2(1–x1)
Cho pt x2-–(2m–1)x+m(m–1)=0.gọi x1 x2 là nghiệm pt (x1 <x2) TM x12–2x2+3 lớn hơn hoặc bằng 0
Cho PT: \(x^2+\left(m+1\right)x+m-1=0\left(1\right)\)
Gọi x1, x2 là 2 nghiệm của PT (1). Tìm m để \(x^2_1x_2+x^2_2x_1=-8\)
Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-m-1\\x_1.x_2=m-1\end{matrix}\right.\)
\(x_1^2x_2+x_2^2x_1=-8\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=-8\)
\(\Leftrightarrow\left(m-1\right)\left(-m-1\right)=-8\)
\(\Leftrightarrow-m^2-m+m+1=-8\)
\(\Leftrightarrow-m^2+9=0\)
\(\Leftrightarrow-m^2=-9\)
\(\Leftrightarrow m=\pm\sqrt{3}\)
Do pt có 2 nghiệm \(x_1,x_2\) nên theo đ/l Vi-ét , ta có :
\(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=-m-1\\P=x_1x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)
Ta có :
\(x_1^2x_2+x_2^2x_1=-8\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=-8\)
\(\Leftrightarrow P.S+8=0\)
\(\Leftrightarrow\left(m-1\right).\left(-m-1\right)+8=0\)
\(\Leftrightarrow-m^2-m+m+1+8=0\)
\(\Leftrightarrow-m^2+9=0\)
\(\Leftrightarrow-m^2=-9\)
\(\Leftrightarrow m^2=9\)
\(\Leftrightarrow m=\pm3\)
Cho pt x^2-(2m-1)x+m(m-1) = 0. Gọi x1,x2 là hai nghiệm của pt với x1<x2. Cm x1^2-2x2+3>=0
Cho pt: (1+√3)x2 _ 2x +1 - √3=0 (1)
Gọi 2 nghiệm của pt (1) là x1,x2 . Lập 1 pt bậc 2 có 2 nghiệm là : 1/x1 và 1/x2
Cho pt x²+x-1=0 gọi x1 là nghiệm của pt
Tính P =√(x1⁸+10x+13)+x1
gọi x1 ,x2 là nghiệm của pt \(x^2+2x-5=0\) tính A=\(\left(x_1-x_2\right)^2+x_1x_2\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-5\end{matrix}\right.\)
Ta có : \(A=\left(x_1+x_2\right)^2-3x_1x_2\)
\(\Rightarrow4-3\left(-5\right)=4+15=19\)
Vậy A = 19
Cho pt : x^2 -2x - m = 0 m ? Để pt có 2 nghiệm x1 , x2 t/ mãn ( x1 , x2 + 1)^2 = 2 ( x^1+ x^2)
\(x^2-2x-m=0\)
Theo Vi-ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{- \left(-2\right)}{1}=2\\x_1x_2=\dfrac{c}{a}=-m\end{matrix}\right.\)
Ta có :
\(\left(x_1x_2+1\right)^2=2\left(x_1+x_2\right)\) ( Cái chỗ x^1 , x^2 bn ghi nhầm thành mũ à)
\(\Leftrightarrow\left(-m+1\right)^2-2.2=0\)
\(\Leftrightarrow m^2-2m+1-4=0\)
\(\Leftrightarrow m^2-2m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)
Vậy \(m=3;m=-1\) thì thỏa mãn
\(x^2-mx-3=0\)
\(\Delta=m^2+12>0\)nên phương trình luôn có hai nghiệm phân biệt \(x_1,x_2\).
Theo định lí Viete ta có:
\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-3\end{cases}}\).
\(\left(x_1+6\right)\left(x_2+6\right)==2019\)
\(\Leftrightarrow x_1x_2+6\left(x_1+x_2\right)+36=2019\)
\(\Rightarrow-3+6m+36=2019\)
\(\Leftrightarrow m=331\)..
cho pt bậc hai ẩn x : \(2x^2+2mx+m^2-2=0\)
a) xác định m để pt có 2 nghiệm.
b) gọi x1,x2 là nghiệm của pt trên tìm giá trị lớn nhất của biểu thức: A=\(\left|2x_1x_2+x_1+x_2-4\right|\)
a, Phương trình có hai nghiệm khi
\(\Delta'=m^2-2\left(m^2-2\right)=-m^2+4\ge0\Leftrightarrow-2\le m\le2\)
b, Theo định lí Viet \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=\dfrac{m^2-2}{2}\end{matrix}\right.\)
\(A=\left|2x_1x_2+x_1+x_2-4\right|\)
\(=\left|m^2-2-m-4\right|\)
\(=\left|\left(m-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\right|\)
\(=\left|-\left(m-\dfrac{1}{2}\right)^2+\dfrac{25}{4}\right|\le\dfrac{25}{4}\)
\(maxA=\dfrac{25}{4}\Leftrightarrow m=\dfrac{1}{2}\)