Những câu hỏi liên quan
H24
Xem chi tiết

Giải:

Ta gọi \(\dfrac{10^{1990}+1}{10^{1991}+1}\) =A và \(\dfrac{10^{1991}}{10^{1992}}\) =B

Ta có:

A=\(\dfrac{10^{1990}+1}{10^{1991}+1}\) 

10A=\(\dfrac{10^{1991}+10}{10^{1991}+1}\) 

10A=\(\dfrac{10^{1991}+1+9}{10^{1991}+1}\) 

10A=\(1+\dfrac{9}{10^{1991}+1}\) 

Tương tự:

B=\(\dfrac{10^{1991}}{10^{1992}}\) 

10B=\(\dfrac{10^{1992}}{10^{1992}}=1\) 

Vì \(\dfrac{9}{10^{1991}+1}< 1\) nên 10A<10B

⇒ \(\dfrac{10^{1990}+1}{10^{1991}+1}\) < \(\dfrac{10^{1991}}{10^{1992}}\)

Bình luận (0)
HH
Xem chi tiết
PA
4 tháng 5 2015 lúc 20:09

A>B

hình như zậy đó

 

 

 

Bình luận (0)
PL
Xem chi tiết
NH
9 tháng 4 2017 lúc 16:07

Ta có :

\(10A=\dfrac{10^{1991}+10}{10^{1991}+1}=\dfrac{10^{1991}+1+9}{10^{1991}+1}=1+\dfrac{9}{10^{1991}+1}\)\(\left(1\right)\)

\(10B=\dfrac{10^{1992}+10}{10^{1992}+1}=\dfrac{10^{1992}+1+9}{10^{1992}+1}=1+\dfrac{9}{10^{1992}+1}\)\(\left(2\right)\)

\(1+\dfrac{9}{10^{1991}+1}>1+\dfrac{9}{10^{1992}+1}\)\(\left(3\right)\)

Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow10A>10B\)

\(\Rightarrow A>B\)

~ Chúc bn học tốt ~

Bình luận (1)
TD
9 tháng 4 2017 lúc 16:01

Ta có:

A=101990+1101991+1=101990.10101991.10=101990101991=1/10A=101990+1101991+1=101990.10101991.10=101990101991=1/10 (%)


B=101991+1101992+1=101991.10101992.10=101991101992=1/10B=101991+1101992+1=101991.10101992.10=101991101992=1/10 (%) (%)

Bình luận (1)
TC
9 tháng 4 2017 lúc 20:13

Ta có B=\(\dfrac{10^{1991}+1}{10^{1992}+1}\)<\(\dfrac{10^{1991}+1+9}{10^{1992}+1+9}\)=\(\dfrac{10^{1991}+10}{10^{1992}+10}\)=\(\dfrac{10.\left(10^{1990}+1\right)}{10.\left(10^{1991}+1\right)}\)=\(\dfrac{10^{1990}+1}{10^{1991}+1}\)=A

Vậy B<A

Bình luận (0)
H24
Xem chi tiết

Giải:

a) \(A=\dfrac{10^{1990}+1}{10^{1991}+1}\) và \(B=\dfrac{10^{1991}+1}{10^{1992}+1}\) 

Ta có:

\(A=\dfrac{10^{1990}+1}{10^{1991}+1}\) 

\(10A=\dfrac{10^{1991}+10}{10^{1991}+1}\) 

\(10A=\dfrac{10^{1991}+1+9}{10^{1991}+1}\) 

\(10A=1+\dfrac{9}{10^{1991}+1}\) 

Tương tự : 

\(B=\dfrac{10^{1991}+1}{10^{1992}+1}\) 

\(10B=\dfrac{10^{1992}+10}{10^{1992}+1}\) 

\(10B=\dfrac{10^{1992}+1+9}{10^{1992}+1}\) 

\(10B=1+\dfrac{9}{10^{1992}+1}\) 

Vì \(\dfrac{9}{10^{1991}+1}>\dfrac{9}{10^{1992}+1}\) nên \(10A>10B\) 

\(\Rightarrow A>B\left(đpcm\right)\) 

Chúc bạn học tốt!

Bình luận (1)
KM
Xem chi tiết
LP
Xem chi tiết
LP
Xem chi tiết
AH
Xem chi tiết
LQ
Xem chi tiết
SG
18 tháng 7 2016 lúc 16:31

Áp dụng a/b < 1 => a/b < a+m/b+m (a;b;m thuộc N*)

=> \(B=\frac{10^{1991}+1}{10^{1992}+1}< \frac{10^{1991}+1+9}{10^{1992}+1+9}\)

=> \(B< \frac{10^{1991}+10}{10^{1992}+10}\)

=> \(B< \frac{10.\left(10^{1990}+1\right)}{10.\left(10^{1991}+1\right)}\)

=> \(B< \frac{10^{1990}+1}{10^{1991}+1}=A\)

=> B < A

Bình luận (0)
NN
18 tháng 7 2016 lúc 16:32

Bài này mình biết làm nè , nhưng ... dài dòng lắm 

Bình luận (0)
NN
18 tháng 7 2016 lúc 16:40

Bài này còn có cách khác 

Bình luận (0)