H24

Bài 3: Chứng tỏ rằng:

a, Nếu A= \(\dfrac{\left(10^{1990}+1\right)}{10^{1991}+1}\)và B = \(\dfrac{\left(10^{1991}+1\right)}{10^{1992}+1}\)thì A > B

Giúp mik vs! Thanks nha!

Giải:

a) \(A=\dfrac{10^{1990}+1}{10^{1991}+1}\) và \(B=\dfrac{10^{1991}+1}{10^{1992}+1}\) 

Ta có:

\(A=\dfrac{10^{1990}+1}{10^{1991}+1}\) 

\(10A=\dfrac{10^{1991}+10}{10^{1991}+1}\) 

\(10A=\dfrac{10^{1991}+1+9}{10^{1991}+1}\) 

\(10A=1+\dfrac{9}{10^{1991}+1}\) 

Tương tự : 

\(B=\dfrac{10^{1991}+1}{10^{1992}+1}\) 

\(10B=\dfrac{10^{1992}+10}{10^{1992}+1}\) 

\(10B=\dfrac{10^{1992}+1+9}{10^{1992}+1}\) 

\(10B=1+\dfrac{9}{10^{1992}+1}\) 

Vì \(\dfrac{9}{10^{1991}+1}>\dfrac{9}{10^{1992}+1}\) nên \(10A>10B\) 

\(\Rightarrow A>B\left(đpcm\right)\) 

Chúc bạn học tốt!

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
LP
Xem chi tiết
HH
Xem chi tiết
DI
Xem chi tiết
KJ
Xem chi tiết
KM
Xem chi tiết
LP
Xem chi tiết
AH
Xem chi tiết
VH
Xem chi tiết