NK

So sánh:

A=\(\dfrac{10^{1990}+1}{10^{1991}+1}\) và B=\(\dfrac{10^{1991}+1}{10^{1992}+1}\)

NK
20 tháng 3 2023 lúc 12:26

đáng ra là toán lớp 6 đó nhưng mik thích đặt toán lớp 5 :)

 

Bình luận (0)
NH
20 tháng 3 2023 lúc 12:31

A = \(\dfrac{10^{1990}+1}{10^{1991}+1}\) ⇒ 10A = \(\dfrac{10^{1991}+10}{10^{1991}+1}\) = \(1+\dfrac{9}{10^{1991}+1}\)

B =  \(\dfrac{10^{1991}+10}{10^{1992}+1}\) ⇒ 10B = \(\dfrac{10^{1992}+10}{10^{1992}+1}\) = 1 + \(\dfrac{9}{10^{1992}+1}\)

Vì \(\dfrac{9}{10^{1991}+1}\) > \(\dfrac{9}{10^{1992}+1}\)

10A > 10B => A > B

Bình luận (0)

Các câu hỏi tương tự
VA
Xem chi tiết
LK
Xem chi tiết
DC
Xem chi tiết
NA
Xem chi tiết
LL
Xem chi tiết
HH
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết