Ôn tập toán 6

PL

So sánh:

A = \(\dfrac{10^{1990}+1}{10^{1991}+1}\)

B = \(\dfrac{10^{1991}+1}{10^{1992}+1}\)

NH
9 tháng 4 2017 lúc 16:07

Ta có :

\(10A=\dfrac{10^{1991}+10}{10^{1991}+1}=\dfrac{10^{1991}+1+9}{10^{1991}+1}=1+\dfrac{9}{10^{1991}+1}\)\(\left(1\right)\)

\(10B=\dfrac{10^{1992}+10}{10^{1992}+1}=\dfrac{10^{1992}+1+9}{10^{1992}+1}=1+\dfrac{9}{10^{1992}+1}\)\(\left(2\right)\)

\(1+\dfrac{9}{10^{1991}+1}>1+\dfrac{9}{10^{1992}+1}\)\(\left(3\right)\)

Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow10A>10B\)

\(\Rightarrow A>B\)

~ Chúc bn học tốt ~

Bình luận (1)
TD
9 tháng 4 2017 lúc 16:01

Ta có:

A=101990+1101991+1=101990.10101991.10=101990101991=1/10A=101990+1101991+1=101990.10101991.10=101990101991=1/10 (%)


B=101991+1101992+1=101991.10101992.10=101991101992=1/10B=101991+1101992+1=101991.10101992.10=101991101992=1/10 (%) (%)

Bình luận (1)
TC
9 tháng 4 2017 lúc 20:13

Ta có B=\(\dfrac{10^{1991}+1}{10^{1992}+1}\)<\(\dfrac{10^{1991}+1+9}{10^{1992}+1+9}\)=\(\dfrac{10^{1991}+10}{10^{1992}+10}\)=\(\dfrac{10.\left(10^{1990}+1\right)}{10.\left(10^{1991}+1\right)}\)=\(\dfrac{10^{1990}+1}{10^{1991}+1}\)=A

Vậy B<A

Bình luận (0)

Các câu hỏi tương tự
DW
Xem chi tiết
KK
Xem chi tiết
PH
Xem chi tiết
PB
Xem chi tiết
HA
Xem chi tiết
NM
Xem chi tiết
TT
Xem chi tiết
TQ
Xem chi tiết
H24
Xem chi tiết