Những câu hỏi liên quan
SO
Xem chi tiết
DH
Xem chi tiết
TN
Xem chi tiết
TV
Xem chi tiết
TV
12 tháng 7 2018 lúc 10:13

Mik sẽ hậu ta ạ

Bình luận (0)
VA
Xem chi tiết
GW
14 tháng 9 2021 lúc 20:31

\(b)B=\left|x-\frac{1}{2}\right|+\frac{3}{4}\)

Dùng KT \(\left|x\right|\ge0\)\(\forall\)\(x\)

BG :

Ta có : \(\left|x-\frac{1}{2}\right|\ge0\)\(\forall\)\(x\)

\(\Rightarrow\)\(\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge0+\frac{3}{4}\)\(\forall\)\(x\)

\(\Rightarrow\)\(\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\)\(\forall\)\(x\)

Hay \(B\ge\frac{3}{4}\)\(\forall\)\(x\)

Dấu "=" xảy ra khi :

 \(\Leftrightarrow\)\(\left|x-\frac{1}{2}\right|=0\)

\(\Leftrightarrow x-\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTNN của \(B=\frac{3}{4}\)đạt được khi \(x=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
YN
14 tháng 9 2021 lúc 20:32

\(A=\left|x+\frac{3}{2}\right|\ge0\)

\(MinA=0\Rightarrow\left|x+\frac{3}{2}\right|=0\Rightarrow x=\frac{-3}{2}\)

\(B=\left|x-\frac{1}{2}\right|+\frac{3}{4}\)

\(B\ge\frac{3}{4}\)do\(\left|x-\frac{1}{2}\right|\ge0\)

\(MinB=\frac{3}{4}\Rightarrow\left|x-\frac{1}{2}\right|=0\Rightarrow x=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
BN
Xem chi tiết
NT
3 tháng 2 2022 lúc 0:13

Bài 1: 

\(\left\{{}\begin{matrix}a=5c+1\\b=5d+2\end{matrix}\right.\)

\(a^2+b^2=\left(5c+1\right)^2+\left(5d+2\right)^2\)

\(=25c^2+10c+1+25d^2+20d+4\)

\(=25c^2+25d^2+10c+20d+5\)

\(=5\left(5c^2+5d^2+2c+4d+1\right)⋮5\)

Bài 3: 

a: \(4x^2+12x+15=4x^2+12x+9+6=\left(2x+3\right)^2+6>=6\forall x\)

Dấu '=' xảy ra khi x=-3/2

b: \(9x^2-6x+5=9x^2-6x+1+4=\left(3x-1\right)^2+4>=4\forall x\)

Dấu '=' xảy ra khi x=1/3

Bình luận (0)
NM
Xem chi tiết
NA
Xem chi tiết
DH
9 tháng 5 2021 lúc 15:45

\(F=a^3+b^3+ab\left(a+b\right)+2a+b+\frac{3}{a}+\frac{2}{b}\)

\(F=\left(a+b\right)^3-3ab\left(a+b\right)+ab\left(a+b\right)+a+b+a+\frac{1}{a}+\frac{2}{a}+\frac{2}{b}\)

\(F=8-4ab+2+a+\frac{1}{a}+\frac{2}{a}+\frac{2}{b}\)

Ta có: \(\left(a+b\right)^2\ge4ab\Leftrightarrow-4ab\ge-\left(a+b\right)^2=-4\)

\(a+\frac{1}{a}\ge2\sqrt{a.\frac{1}{a}}=2\)

\(\frac{2}{a}+\frac{2}{b}\ge\frac{8}{a+b}=4\)

Suy ra \(F\ge8-4+2+2+4=12\)

Dấu \(=\)xảy ra khi \(a=b=1\).

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
10 tháng 3 2017 lúc 20:32

Gtnn=0

Gtln=ăn

Bình luận (0)
H24
10 tháng 3 2017 lúc 21:15

Đặt A= ab/a+b=10a+b/a+b=1+9a/a+b

=1+9/a+b/a=1+9/1+b/a

Để A đạt gtnn thì 9/1+b/a nhỏ nhất=>1+b/a lớn nhất =>b/a lớn nhất

=>b/a=9

Vậy  gtnn A=19/10

Bình luận (0)